Super Immun
Le programme naturel pour renforcer vos défenses immunitaires
et naviguer les pandémies virales avec sérénité
Les références scientifiques
Vous trouverez toutes les références utilisées pour l'écriture de Super-Immun.
Les références sont organisées de la sorte, pour chaque chapitre:
- tout d'abord, les liens Internet et les noms d'auteur
- les références complètes
Chapitre 1 - Notre système immunitaire
Vous pouvez trouver des références dans n'importe quel livre d'immunilogie
Chapitre 2 - SARS-CoV-2
https://www.thetimes.co.uk/article/seven-year-covid-trail-revealed-l5vxt7jqp
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30584-3/fulltext (Perez-Saez et al.)
https://www.medrxiv.org/content/10.1101/2020.05.31.20118554v4 (Emmenegger et al., 2020)
https://www.medrxiv.org/content/10.1101/2020.05.13.20101253v3 (Ioannidis, 2020)
https://www.medrxiv.org/content/10.1101/2020.04.05.20054361v2 (Ioannidis et al., 2020)
https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.31.2001383 (Poletti et al., 2020)
https://www.letemps.ch/suisse/malgre-virus-suisse-connu-deces-premier-semestre-lan-passe
https://www.bmj.com/content/370/bmj.m3364 (Burgess et al., 2020)
https://www.biorxiv.org/content/10.1101/2020.05.21.108308v1 (Cervia et al., 2020)
https://abcnews.go.com/Health/live-updates/coronavirus/?id=72721768
La Rosa G, Bonadonna L, Lucentini L, Kenmoe S, Suffredini E. Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Research. 2020 2020/07/15/;179:115899. (La Rosa et al., 2020)
Lee S, Kim T, Lee E, Lee C, Kim H, Rhee H, et al. Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Internal Medicine (Lee et al., 2020)
Liu Y, Yan L-M, Wan L, Xiang T-X, Le A, Liu J-M, et al. Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases. 2020. (Liu et al., 2020)
Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfusion Medicine Reviews. 2020 2020/02/21/. (Chang et al., 2020)
Perera R, Tso E, Tsang OTY, Tsang DNC, Fung K, Leung YWY, et al. SARS-CoV-2 Virus Culture and Subgenomic RNA for Respiratory Specimens from Patients with Mild Coronavirus Disease. Emerging infectious diseases. 2020 Aug 4;26(11). (Perera et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32807936/ PMID: 32807936 (M. K. Slifka & L. Gao, 2020)
https://pubmed.ncbi.nlm.nih.gov/32525469/ PMID: 32525469 (Zhao et al., 2020)
https://europepmc.org/article/pmc/pmc7291769 PMCID: PMC7291769 (Tan et al., 2020b)
https://pubmed.ncbi.nlm.nih.gov/32171076/ PMID: 32171076 (Zhou et al., 2020)
https://www.biorxiv.org/content/10.1101/2020.03.13.990226v1 (Bao et al., 2020)
https://www.ecdc.europa.eu/en/covid-19/latest-evidence/transmission
https://www.nature.com/articles/s41591-020-1046-6 (Mark K. Slifka & Lina Gao, 2020)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322154/ (Zhao et al., 2020)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7291769/ (Tan et al., 2020a)
Bao, L., Deng, W., Gao, H., Xiao, C., Liu, J., Xue, J., Lv, Q., Liu, J., Yu, P., Xu, Y., Qi, F., Qu, Y., Li, F., Xiang, Z., Yu, H., Gong, S., Liu, M., Wang, G., Wang, S., Song, Z., Zhao, W., Han, Y., Zhao, L., Liu, X., Wei, Q., & Qin, C. (2020). Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. bioRxiv, 2020.2003.2013.990226. https://doi.org/10.1101/2020.03.13.990226
Burgess, S., Ponsford, M. J., & Gill, D. (2020). Are we underestimating seroprevalence of SARS-CoV-2? BMJ, 370, m3364. https://doi.org/10.1136/bmj.m3364
Cervia, C., Nilsson, J., Zurbuchen, Y., Valaperti, A., Schreiner, J., Wolfensberger, A., Raeber, M. E., Adamo, S., Emmenegger, M., Hasler, S., Bosshard, P. P., De Cecco, E., Bächli, E., Rudiger, A., Stüssi-Helbling, M., Huber, L. C., Zinkernagel, A. S., Schaer, D. J., Aguzzi, A., Held, U., Probst-Müller, E., Rampini, S. K., & Boyman, O. (2020). Systemic and mucosal antibody secretion specific to SARS-CoV-2 during mild versus severe COVID-19. bioRxiv, 2020.2005.2021.108308. https://doi.org/10.1101/2020.05.21.108308
Chang, L., Yan, Y., & Wang, L. (2020, Apr). Coronavirus Disease 2019: Coronaviruses and Blood Safety. Transfus Med Rev, 34(2), 75-80. https://doi.org/10.1016/j.tmrv.2020.02.003
Emmenegger, M., De Cecco, E., Lamparter, D., Jacquat, R. P. B., Ebner, D., Schneider, M. M., Morales, I. C., Schneider, D., Doğançay, B., Guo, J., Wiedmer, A., Domange, J., Imeri, M., Moos, R., Zografou, C., Trevisan, C., Gonzalez-Guerra, A., Carrella, A., Dubach, I. L., Althaus, C. L., Xu, C. K., Meisl, G., Kosmoliaptsis, V., Malinauskas, T., Burgess-Brown, N., Owens, R., Hatch, S., Mongkolsapaya, J., Screaton, G. R., Schubert, K., Huck, J. D., Liu, F., Pojer, F., Lau, K., Hacker, D., Probst-Müller, E., Cervia, C., Nilsson, J., Boyman, O., Saleh, L., Spanaus, K., von Eckardstein, A., Schaer, D. J., Ban, N., Tsai, C.-J., Marino, J., Schertler, G. F. X., Ebert, N., Thiel, V., Gottschalk, J., Frey, B. M., Reimann, R., Hornemann, S., Ring, A. M., Knowles, T. P. J., Xenarios, I., Stuart, D. I., & Aguzzi, A. (2020). Early peak and rapid decline of SARS-CoV-2 seroprevalence in a Swiss metropolitan region. medRxiv, 2020.2005.2031.20118554. https://doi.org/10.1101/2020.05.31.20118554
Ioannidis, J. P. A. (2020). The infection fatality rate of COVID-19 inferred from seroprevalence data. medRxiv, 2020.2005.2013.20101253. https://doi.org/10.1101/2020.05.13.20101253
Ioannidis, J. P. A., Axfors, C., & Contopoulos-Ioannidis, D. G. (2020). Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. medRxiv, 2020.2004.2005.20054361. https://doi.org/10.1101/2020.04.05.20054361
La Rosa, G., Bonadonna, L., Lucentini, L., Kenmoe, S., & Suffredini, E. (2020, Jul 15). Coronavirus in water environments: Occurrence, persistence and concentration methods - A scoping review. Water Res, 179, 115899. https://doi.org/10.1016/j.watres.2020.115899
Lee, S., Kim, T., Lee, E., Lee, C., Kim, H., Rhee, H., Park, S. Y., Son, H.-J., Yu, S., Park, J. W., Choo, E. J., Park, S., Loeb, M., & Kim, T. H. (2020). Clinical Course and Molecular Viral Shedding Among Asymptomatic and Symptomatic Patients With SARS-CoV-2 Infection in a Community Treatment Center in the Republic of Korea. JAMA Internal Medicine, 180(11), 1447-1452. https://doi.org/10.1001/jamainternmed.2020.3862
Liu, Y., Yan, L.-M., Wan, L., Xiang, T.-X., Le, A., Liu, J.-M., Peiris, M., Poon, L. L. M., & Zhang, W. (2020). Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases, 20(6), 656-657. https://doi.org/10.1016/S1473-3099(20)30232-2
Perera, R., Tso, E., Tsang, O. T. Y., Tsang, D. N. C., Fung, K., Leung, Y. W. Y., Chin, A. W. H., Chu, D. K. W., Cheng, S. M. S., Poon, L. L. M., Chuang, V. W. M., & Peiris, M. (2020, Nov). SARS-CoV-2 Virus Culture and Subgenomic RNA for Respiratory Specimens from Patients with Mild Coronavirus Disease. Emerg Infect Dis, 26(11), 2701-2704. https://doi.org/10.3201/eid2611.203219
Perez-Saez, J., Lauer, S. A., Kaiser, L., Regard, S., Delaporte, E., Guessous, I., Stringhini, S., Azman, A. S., Alioucha, D., Arm-Vernez, I., Bahta, S., Barbolini, J., Baysson, H., Butzberger, R., Cattani, S., Chappuis, F., Chiovini, A., Collombet, P., Courvoisier, D., De Ridder, D., De Weck, E., D'Ippolito, P., Daeniker, A., Desvachez, O., Dibner, Y., Dubas, C., Duc, J., Eckerle, I., Eelbode, C., El Merjani, N., Emery, B., Favre, B., Flahault, A., Francioli, N., Gétaz, L., Gilson, A., Gonul, A., Guérin, J., Hassar, L., Hepner, A., Hovagemyan, F., Hurst, S., Keiser, O., Kir, M., Lamour, G., Lescuyer, P., Lombard, F., Mach, A., Malim, Y., Marchetti, E., Marcus, K., Maret, S., Martinez, C., Massiha, K., Mathey-Doret, V., Mattera, L., Matute, P., Maugey, J.-M., Meyer, B., Membrez, T., Michel, N., Mitrovic, A., Mohbat, E. M., Nehme, M., Noël, N., Oulevey, H.-K., Pardo, F., Pennacchio, F., Petrovic, D., Picazio, A., Piumatti, G., Pittet, D., Portier, J., Poulain, G., Posfay-Barbe, K., Pradeau, J.-F., Pugin, C., Rakotomiaramanana, R. B., Richard, A., Rocchia Fine, C., Sakvarelidze, I., Salzmann-Bellard, L., Schellongova, M., Schrempft, S., Seixas Miranda, M., Stimec, M., Tacchino, M., Theurillat, S., Tomasini, M., Toruslu, K.-G., Tounsi, N., Trono, D., Vincent, N., Violot, G., Vuilleumier, N., Waldmann, Z., Welker, S., Will, M., Wisniak, A., Yerly, S., Zaballa, M.-E., & Zeballos Valle, A. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. The Lancet Infectious Diseases. https://doi.org/10.1016/S1473-3099(20)30584-3
Poletti, P., Tirani, M., Cereda, D., Trentini, F., Guzzetta, G., Marziano, V., Buoro, S., Riboli, S., Crottogini, L., Piccarreta, R., Piatti, A., Grasselli, G., Melegaro, A., Gramegna, M., Ajelli, M., & Merler, S. (2020, Aug). Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Euro Surveill, 25(31). https://doi.org/10.2807/1560-7917.Es.2020.25.31.2001383
Slifka, M. K., & Gao, L. (2020, Oct). Is presymptomatic spread a major contributor to COVID-19 transmission? Nat Med, 26(10), 1531-1533. https://doi.org/10.1038/s41591-020-1046-6
Slifka, M. K., & Gao, L. (2020, 2020/10/01). Is presymptomatic spread a major contributor to COVID-19 transmission? Nature Medicine, 26(10), 1531-1533. https://doi.org/10.1038/s41591-020-1046-6
Tan, J., Liu, S., Zhuang, L., Chen, L., Dong, M., Zhang, J., & Xin, Y. (2020a, May). Transmission and clinical characteristics of asymptomatic patients with SARS-CoV-2 infection. Future Virol. https://doi.org/10.2217/fvl-2020-0087
Tan, J., Liu, S., Zhuang, L., Chen, L., Dong, M., Zhang, J., & Xin, Y. (2020b, 12 Jun). Transmission and clinical characteristics of asymptomatic patients with SARS-CoV-2 infection.
Zhao, H., Lu, X., Deng, Y., Tang, Y., & Lu, J. (2020, Jun 11). COVID-19: asymptomatic carrier transmission is an underestimated problem. Epidemiol Infect, 148, e116. https://doi.org/10.1017/s0950268820001235
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020, Mar 28). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 395(10229), 1054-1062. https://doi.org/10.1016/s0140-6736(20)30566-3
Chapitre 3 - L'environnement, l'hôte et la maladie Covid-19
https://www.santepubliquefrance.fr/content/download/285453/2749950
https://www.bmj.com/content/369/bmj.m1375 (Day, 2020)
https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html
Chen J, Fan H, Zhang L, Huang B, Zhu M, Zhou Y, et al. Retrospective Analysis of Clinical Features in 101 Death Cases with COVID-19. medRxiv.9 March 2020. 20033068 (Fan et al., 2020)
https://www.bmj.com/content/370/bmj.m3259 (Spiegelhalter, 2020)
https://pubmed.ncbi.nlm.nih.gov/32283155/ PMID: 32283155 (Fu et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32352202/ PMID: 32352202 (Lechien et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32369429/ PMID: 32369429 (Tong et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32593339/ PMID: 32593339 (Tong et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32407459/ PMID: 32407459 (J. J. Y. Zhang et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32352202/ PMID: 32352202 (Lechien et al., 2020)
https://doi.org/10.1101/2020.02.24.20027268 (Caramelo et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32536475/ PMID: 32536475 (Hernández-Garduño, 2020)
https://pubmed.ncbi.nlm.nih.gov/32623035/ PMID: 32623035 (Albitar et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32526275/ PMID: 32526275 (Cen et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32814959/ PMID: 32814959 (Chadeau-Hyam et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33023649/ PMID: 33023649 (Murtas et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32796045/ PMID: 32796045 (Pablos et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32502509/ PMID: 32502509 (Liu et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32769150/ PMID: 32769150 (Freites Nuñez et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32972995/ PMID: 32972995 (Q. Zhang et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32972996/ PMID: 32972996 (Bastard et al., 2020)
https://rxisk.org/medications-compromising-covid-infections/
https://pubmed.ncbi.nlm.nih.gov/32846654/ PMID: 32846654 (Ioannidis et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32447007/ PMID: 32447007 (Frontera et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32814959/ PMID: 32814959 (Chadeau-Hyam et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/3238767/ PMID: 3238767 (Blackburn & Swanepoel, 1988)
https://pubmed.ncbi.nlm.nih.gov/32580440/ PMID: 32580440 (Comunian et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32454138/ PMID: 32454138 (Hamer et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32846825/ PMID: 32846825 (Zhou et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32389882/ PMID: 32389882 (Nieman, 2020)
https://pubmed.ncbi.nlm.nih.gov/33129373/ PMID: 33129373 (Ripperger et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32871063/ PMID: 32871063 (Gudbjartsson et al., 2020)
https://www.cell.com/cell/fulltext/S0092-8674(20)30610-3 (Grifoni et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33016619/ PMID: 33016619 (Liotta et al., 2020)
Albitar, O., Ballouze, R., Ooi, J. P., & Sheikh Ghadzi, S. M. (2020, Aug). Risk factors for mortality among COVID-19 patients. Diabetes Res Clin Pract, 166, 108293. https://doi.org/10.1016/j.diabres.2020.108293
Bastard, P., Rosen, L. B., Zhang, Q., Michailidis, E., Hoffmann, H. H., Zhang, Y., Dorgham, K., Philippot, Q., Rosain, J., Béziat, V., Manry, J., Shaw, E., Haljasmägi, L., Peterson, P., Lorenzo, L., Bizien, L., Trouillet-Assant, S., Dobbs, K., de Jesus, A. A., Belot, A., Kallaste, A., Catherinot, E., Tandjaoui-Lambiotte, Y., Le Pen, J., Kerner, G., Bigio, B., Seeleuthner, Y., Yang, R., Bolze, A., Spaan, A. N., Delmonte, O. M., Abers, M. S., Aiuti, A., Casari, G., Lampasona, V., Piemonti, L., Ciceri, F., Bilguvar, K., Lifton, R. P., Vasse, M., Smadja, D. M., Migaud, M., Hadjadj, J., Terrier, B., Duffy, D., Quintana-Murci, L., van de Beek, D., Roussel, L., Vinh, D. C., Tangye, S. G., Haerynck, F., Dalmau, D., Martinez-Picado, J., Brodin, P., Nussenzweig, M. C., Boisson-Dupuis, S., Rodríguez-Gallego, C., Vogt, G., Mogensen, T. H., Oler, A. J., Gu, J., Burbelo, P. D., Cohen, J. I., Biondi, A., Bettini, L. R., D'Angio, M., Bonfanti, P., Rossignol, P., Mayaux, J., Rieux-Laucat, F., Husebye, E. S., Fusco, F., Ursini, M. V., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Castagnoli, R., Montagna, D., Licari, A., Marseglia, G. L., Duval, X., Ghosn, J., Tsang, J. S., Goldbach-Mansky, R., Kisand, K., Lionakis, M. S., Puel, A., Zhang, S. Y., Holland, S. M., Gorochov, G., Jouanguy, E., Rice, C. M., Cobat, A., Notarangelo, L. D., Abel, L., Su, H. C., & Casanova, J. L. (2020, Oct 23). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 370(6515). https://doi.org/10.1126/science.abd4585
Blackburn, N. K., & Swanepoel, R. (1988, Nov). Observations on antibody levels associated with active and passive immunity to African horse sickness. Trop Anim Health Prod, 20(4), 203-210. https://doi.org/10.1007/bf02239981
Caramelo, F., Ferreira, N., & Oliveiros, B. (2020). Estimation of risk factors for COVID-19 mortality - preliminary results. medRxiv, 2020.2002.2024.20027268. https://doi.org/10.1101/2020.02.24.20027268
Cen, Y., Chen, X., Shen, Y., Zhang, X. H., Lei, Y., Xu, C., Jiang, W. R., Xu, H. T., Chen, Y., Zhu, J., Zhang, L. L., & Liu, Y. H. (2020, Sep). Risk factors for disease progression in patients with mild to moderate coronavirus disease 2019-a multi-centre observational study. Clin Microbiol Infect, 26(9), 1242-1247. https://doi.org/10.1016/j.cmi.2020.05.041
Chadeau-Hyam, M., Bodinier, B., Elliott, J., Whitaker, M. D., Tzoulaki, I., Vermeulen, R., Kelly-Irving, M., Delpierre, C., & Elliott, P. (2020, Oct 1). Risk factors for positive and negative COVID-19 tests: a cautious and in-depth analysis of UK biobank data. Int J Epidemiol, 49(5), 1454-1467. https://doi.org/10.1093/ije/dyaa134
Comunian, S., Dongo, D., Milani, C., & Palestini, P. (2020, Jun 22). Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. Int J Environ Res Public Health, 17(12). https://doi.org/10.3390/ijerph17124487
Day, M. (2020). Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ, 369, m1375. https://doi.org/10.1136/bmj.m1375
Fan, H., Zhang, L., Huang, B., Zhu, M., Zhou, Y., Zhang, H., Tao, X., Cheng, S., Yu, W., Zhu, L., & Chen, J. (2020). Retrospective Analysis of Clinical Features in 101 Death Cases with COVID-19. medRxiv, 2020.2003.2009.20033068. https://doi.org/10.1101/2020.03.09.20033068
Freites Nuñez, D. D., Leon, L., Mucientes, A., Rodriguez-Rodriguez, L., Font Urgelles, J., Madrid García, A., Colomer, J. I., Jover, J. A., Fernandez-Gutierrez, B., & Abasolo, L. (2020, Nov). Risk factors for hospital admissions related to COVID-19 in patients with autoimmune inflammatory rheumatic diseases. Ann Rheum Dis, 79(11), 1393-1399. https://doi.org/10.1136/annrheumdis-2020-217984
Frontera, A., Cianfanelli, L., Vlachos, K., Landoni, G., & Cremona, G. (2020, Aug). Severe air pollution links to higher mortality in COVID-19 patients: The "double-hit" hypothesis. J Infect, 81(2), 255-259. https://doi.org/10.1016/j.jinf.2020.05.031
Fu, L., Wang, B., Yuan, T., Chen, X., Ao, Y., Fitzpatrick, T., Li, P., Zhou, Y., Lin, Y. F., Duan, Q., Luo, G., Fan, S., Lu, Y., Feng, A., Zhan, Y., Liang, B., Cai, W., Zhang, L., Du, X., Li, L., Shu, Y., & Zou, H. (2020, Jun). Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect, 80(6), 656-665. https://doi.org/10.1016/j.jinf.2020.03.041
Grifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A. F., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. (2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181(7), 1489-1501.e1415. https://doi.org/10.1016/j.cell.2020.05.015
Gudbjartsson, D. F., Norddahl, G. L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., Arnthorsson, A. O., Helgason, D., Bjarnadottir, K., Ingvarsson, R. F., Thorsteinsdottir, B., Kristjansdottir, S., Birgisdottir, K., Kristinsdottir, A. M., Sigurdsson, M. I., Arnadottir, G. A., Ivarsdottir, E. V., Andresdottir, M., Jonsson, F., Agustsdottir, A. B., Berglund, J., Eiriksdottir, B., Fridriksdottir, R., Gardarsdottir, E. E., Gottfredsson, M., Gretarsdottir, O. S., Gudmundsdottir, S., Gudmundsson, K. R., Gunnarsdottir, T. R., Gylfason, A., Helgason, A., Jensson, B. O., Jonasdottir, A., Jonsson, H., Kristjansson, T., Kristinsson, K. G., Magnusdottir, D. N., Magnusson, O. T., Olafsdottir, L. B., Rognvaldsson, S., le Roux, L., Sigmundsdottir, G., Sigurdsson, A., Sveinbjornsson, G., Sveinsdottir, K. E., Sveinsdottir, M., Thorarensen, E. A., Thorbjornsson, B., Thordardottir, M., Saemundsdottir, J., Kristjansson, S. H., Josefsdottir, K. S., Masson, G., Georgsson, G., Kristjansson, M., Moller, A., Palsson, R., Gudnason, T., Thorsteinsdottir, U., Jonsdottir, I., Sulem, P., & Stefansson, K. (2020, Oct 29). Humoral Immune Response to SARS-CoV-2 in Iceland. N Engl J Med, 383(18), 1724-1734. https://doi.org/10.1056/NEJMoa2026116
Hamer, M., Kivimäki, M., Gale, C. R., & Batty, G. D. (2020, Jul). Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: A community-based cohort study of 387,109 adults in UK. Brain Behav Immun, 87, 184-187. https://doi.org/10.1016/j.bbi.2020.05.059
Hernández-Garduño, E. (2020, Jul-Aug). Obesity is the comorbidity more strongly associated for Covid-19 in Mexico. A case-control study. Obes Res Clin Pract, 14(4), 375-379. https://doi.org/10.1016/j.orcp.2020.06.001
Ioannidis, J. P. A., Axfors, C., & Contopoulos-Ioannidis, D. G. (2020, Sep). Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res, 188, 109890. https://doi.org/10.1016/j.envres.2020.109890
Lechien, J. R., Chiesa-Estomba, C. M., Place, S., Van Laethem, Y., Cabaraux, P., Mat, Q., Huet, K., Plzak, J., Horoi, M., Hans, S., Rosaria Barillari, M., Cammaroto, G., Fakhry, N., Martiny, D., Ayad, T., Jouffe, L., Hopkins, C., & Saussez, S. (2020, Sep). Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med, 288(3), 335-344. https://doi.org/10.1111/joim.13089
Liotta, E. M., Batra, A., Clark, J. R., Shlobin, N. A., Hoffman, S. C., Orban, Z. S., & Koralnik, I. J. (2020, Nov). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Transl Neurol, 7(11), 2221-2230. https://doi.org/10.1002/acn3.51210
Liu, M., Gao, Y., Zhang, Y., Shi, S., Chen, Y., & Tian, J. (2020, Sep). The association between severe or dead COVID-19 and autoimmune diseases: A systematic review and meta-analysis. J Infect, 81(3), e93-e95. https://doi.org/10.1016/j.jinf.2020.05.065
Murtas, R., Andreano, A., Gervasi, F., Guido, D., Consolazio, D., Tunesi, S., Andreoni, L., Greco, M. T., Gattoni, M. E., Sandrini, M., Riussi, A., & Russo, A. G. (2020, Oct 6). Association between autoimmune diseases and COVID-19 as assessed in both a test-negative case-control and population case-control design. Auto Immun Highlights, 11(1), 15. https://doi.org/10.1186/s13317-020-00141-1
Nieman, D. C. (2020, Jul). Coronavirus disease-2019: A tocsin to our aging, unfit, corpulent, and immunodeficient society. J Sport Health Sci, 9(4), 293-301. https://doi.org/10.1016/j.jshs.2020.05.001
Pablos, J. L., Galindo, M., Carmona, L., Lledó, A., Retuerto, M., Blanco, R., Gonzalez-Gay, M. A., Martinez-Lopez, D., Castrejón, I., Alvaro-Gracia, J. M., Fernández Fernández, D., Mera-Varela, A., Manrique-Arija, S., Mena Vázquez, N., & Fernandez-Nebro, A. (2020, Dec). Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: a multicentric matched cohort study. Ann Rheum Dis, 79(12), 1544-1549. https://doi.org/10.1136/annrheumdis-2020-218296
Ripperger, T. J., Uhrlaub, J. L., Watanabe, M., Wong, R., Castaneda, Y., Pizzato, H. A., Thompson, M. R., Bradshaw, C., Weinkauf, C. C., Bime, C., Erickson, H. L., Knox, K., Bixby, B., Parthasarathy, S., Chaudhary, S., Natt, B., Cristan, E., El Aini, T., Rischard, F., Campion, J., Chopra, M., Insel, M., Sam, A., Knepler, J. L., Capaldi, A. P., Spier, C. M., Dake, M. D., Edwards, T., Kaplan, M. E., Scott, S. J., Hypes, C., Mosier, J., Harris, D. T., LaFleur, B. J., Sprissler, R., Nikolich-Žugich, J., & Bhattacharya, D. (2020, Nov 17). Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low-Prevalence Communities and Reveal Durable Humoral Immunity. Immunity, 53(5), 925-933.e924. https://doi.org/10.1016/j.immuni.2020.10.004
Spiegelhalter, D. (2020). Use of “normal” risk to improve understanding of dangers of covid-19. BMJ, 370, m3259. https://doi.org/10.1136/bmj.m3259
Tong, J. Y., Wong, A., Zhu, D., Fastenberg, J. H., & Tham, T. (2020, Jul). The Prevalence of Olfactory and Gustatory Dysfunction in COVID-19 Patients: A Systematic Review and Meta-analysis. Otolaryngol Head Neck Surg, 163(1), 3-11. https://doi.org/10.1177/0194599820926473
Zhang, J. J. Y., Lee, K. S., Ang, L. W., Leo, Y. S., & Young, B. E. (2020, Nov 19). Risk Factors for Severe Disease and Efficacy of Treatment in Patients Infected With COVID-19: A Systematic Review, Meta-Analysis, and Meta-Regression Analysis. Clin Infect Dis, 71(16), 2199-2206. https://doi.org/10.1093/cid/ciaa576
Zhang, Q., Bastard, P., Liu, Z., Le Pen, J., Moncada-Velez, M., Chen, J., Ogishi, M., Sabli, I. K. D., Hodeib, S., Korol, C., Rosain, J., Bilguvar, K., Ye, J., Bolze, A., Bigio, B., Yang, R., Arias, A. A., Zhou, Q., Zhang, Y., Onodi, F., Korniotis, S., Karpf, L., Philippot, Q., Chbihi, M., Bonnet-Madin, L., Dorgham, K., Smith, N., Schneider, W. M., Razooky, B. S., Hoffmann, H. H., Michailidis, E., Moens, L., Han, J. E., Lorenzo, L., Bizien, L., Meade, P., Neehus, A. L., Ugurbil, A. C., Corneau, A., Kerner, G., Zhang, P., Rapaport, F., Seeleuthner, Y., Manry, J., Masson, C., Schmitt, Y., Schlüter, A., Le Voyer, T., Khan, T., Li, J., Fellay, J., Roussel, L., Shahrooei, M., Alosaimi, M. F., Mansouri, D., Al-Saud, H., Al-Mulla, F., Almourfi, F., Al-Muhsen, S. Z., Alsohime, F., Al Turki, S., Hasanato, R., van de Beek, D., Biondi, A., Bettini, L. R., D'Angio, M., Bonfanti, P., Imberti, L., Sottini, A., Paghera, S., Quiros-Roldan, E., Rossi, C., Oler, A. J., Tompkins, M. F., Alba, C., Vandernoot, I., Goffard, J. C., Smits, G., Migeotte, I., Haerynck, F., Soler-Palacin, P., Martin-Nalda, A., Colobran, R., Morange, P. E., Keles, S., Çölkesen, F., Ozcelik, T., Yasar, K. K., Senoglu, S., Karabela Ş, N., Rodríguez-Gallego, C., Novelli, G., Hraiech, S., Tandjaoui-Lambiotte, Y., Duval, X., Laouénan, C., Snow, A. L., Dalgard, C. L., Milner, J. D., Vinh, D. C., Mogensen, T. H., Marr, N., Spaan, A. N., Boisson, B., Boisson-Dupuis, S., Bustamante, J., Puel, A., Ciancanelli, M. J., Meyts, I., Maniatis, T., Soumelis, V., Amara, A., Nussenzweig, M., García-Sastre, A., Krammer, F., Pujol, A., Duffy, D., Lifton, R. P., Zhang, S. Y., Gorochov, G., Béziat, V., Jouanguy, E., Sancho-Shimizu, V., Rice, C. M., Abel, L., Notarangelo, L. D., Cobat, A., Su, H. C., & Casanova, J. L. (2020, Oct 23). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370(6515). https://doi.org/10.1126/science.abd4570
Zhou, J., Sun, J., Cao, Z., Wang, W., Huang, K., Zheng, F., Xie, Y., Jiang, D., & Zhou, Z. (2020, Aug 21). Epidemiological and clinical features of 201 COVID-19 patients in Changsha city, Hunan, China. Medicine (Baltimore), 99(34), e21824. https://doi.org/10.1097/md.0000000000021824
Chapitre 4 - Microbiome, immunité et SARS-CoV-2
https://doi.org/10.110 /2020.04.22.20076091 (Gou et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32442562/ PMID: 32442562 (Zuo, Zhang, et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32497191/ PMID: 32497191 (Gu et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32598884/ PMID: 32598884 (Zuo, Zhan, et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32595361/ PMID: 32595361 (Aktas & Aslim, 2020)
https://pubmed.ncbi.nlm.nih.gov/30322864/ PMID: 30322864 (Durack & Lynch, 2019)
https://pubmed.ncbi.nlm.nih.gov/29768180/ PMID: 29768180 (Trompette et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/21901706/ PMID: 21901706 (Hao et al., 2011)
https://pubmed.ncbi.nlm.nih.gov/32921328/ PMID :32921328 (Angurana & Bansal, 2020)
https://pubmed.ncbi.nlm.nih.gov/32339473/ PMID: 32339473 (Mak et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32762135/ PMID: 32762135 (Bousquet et al., 2020)
Aktas, B., & Aslim, B. (2020). Gut-lung axis and dysbiosis in COVID-19. Turk J Biol, 44(3), 265-272. https://doi.org/10.3906/biy-2005-102
Angurana, S. K., & Bansal, A. (2020, Sep 14). Probiotics and COVID-19: Think about the link. Br J Nutr, 1-26. https://doi.org/10.1017/s000711452000361x
Bousquet, J., Anto, J. M., Czarlewski, W., Haahtela, T., Fonseca, S. C., Iaccarino, G., Blain, H., Vidal, A., Sheikh, A., Akdis, C. A., & Zuberbier, T. (2020, Aug 6). Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy. https://doi.org/10.1111/all.14549
Durack, J., & Lynch, S. V. (2019, Jan 7). The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med, 216(1), 20-40. https://doi.org/10.1084/jem.20180448
Gou, W., Fu, Y., Yue, L., Chen, G.-d., Cai, X., Shuai, M., Xu, F., Yi, X., Chen, H., Zhu, Y., Xiao, M.-l., Jiang, Z., Miao, Z., Xiao, C., Shen, B., Wu, X., Zhao, H., Ling, W., Wang, J., Chen, Y.-m., Guo, T., & Zheng, J.-S. (2020). Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. medRxiv, 2020.2004.2022.20076091. https://doi.org/10.1101/2020.04.22.20076091
Gu, S., Chen, Y., Wu, Z., Chen, Y., Gao, H., Lv, L., Guo, F., Zhang, X., Luo, R., Huang, C., Lu, H., Zheng, B., Zhang, J., Yan, R., Zhang, H., Jiang, H., Xu, Q., Guo, J., Gong, Y., Tang, L., & Li, L. (2020, Jun 4). Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa709
Hao, Q., Lu, Z., Dong, B. R., Huang, C. Q., & Wu, T. (2011, Sep 7). Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst Rev(9), Cd006895. https://doi.org/10.1002/14651858.CD006895.pub2
Mak, J. W. Y., Chan, F. K. L., & Ng, S. C. (2020, Jul). Probiotics and COVID-19: one size does not fit all. Lancet Gastroenterol Hepatol, 5(7), 644-645. https://doi.org/10.1016/s2468-1253(20)30122-9
Trompette, A., Gollwitzer, E. S., Pattaroni, C., Lopez-Mejia, I. C., Riva, E., Pernot, J., Ubags, N., Fajas, L., Nicod, L. P., & Marsland, B. J. (2018, May 15). Dietary Fiber Confers Protection against Flu by Shaping Ly6c(-) Patrolling Monocyte Hematopoiesis and CD8(+) T Cell Metabolism. Immunity, 48(5), 992-1005.e1008. https://doi.org/10.1016/j.immuni.2018.04.022
Zuo, T., Zhan, H., Zhang, F., Liu, Q., Tso, E. Y. K., Lui, G. C. Y., Chen, N., Li, A., Lu, W., Chan, F. K. L., Chan, P. K. S., & Ng, S. C. (2020, Oct). Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology, 159(4), 1302-1310.e1305. https://doi.org/10.1053/j.gastro.2020.06.048
Zuo, T., Zhang, F., Lui, G. C. Y., Yeoh, Y. K., Li, A. Y. L., Zhan, H., Wan, Y., Chung, A. C. K., Cheung, C. P., Chen, N., Lai, C. K. C., Chen, Z., Tso, E. Y. K., Fung, K. S. C., Chan, V., Ling, L., Joynt, G., Hui, D. S. C., Chan, F. K. L., Chan, P. K. S., & Ng, S. C. (2020, Sep). Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology, 159(3), 944-955.e948. https://doi.org/10.1053/j.gastro.2020.05.048
Chapitre 5 - Obésité, micro-inflammation et immunité
https://pubmed.ncbi.nlm.nih.gov/21457180/ PMID: 21457180 (Fezeu et al., 2011)
https://pubmed.ncbi.nlm.nih.gov/20300571/ PMID: 20300571 (Morgan et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/30515985/ PMID: 30515985 (Moser et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/32271993/ PMID: 32271993 (Simonnet et al., 2020)
https://doi.org/10.1101/2020.02.24.20027268 (Caramelo et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/30056777/ PMID: 30056777 (Dixon & Peters, 2018)
https://pubmed.ncbi.nlm.nih.gov/31134099/ PMID: 31134099 (Honce & Schultz-Cherry, 2019a)
https://pubmed.ncbi.nlm.nih.gov/30924873/ PMID: 30924873 (Honce & Schultz-Cherry, 2019b)
https://pubmed.ncbi.nlm.nih.gov/32127459/ PMID: 32127459 (Honce et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32314868/ PMID: 32314868 (Ryan & Caplice, 2020)
https://pubmed.ncbi.nlm.nih.gov/28285710/ PMID: 28285710 (Asghar & Sheikh, 2017)
https://pubmed.ncbi.nlm.nih.gov/17116321/ PMID: 17116321 (Franceschi et al., 2007)
https://pubmed.ncbi.nlm.nih.gov/26219848/ PMID: 26219848 (Hunsche et al., 2016)
https://pubmed.ncbi.nlm.nih.gov/31963377/ PMID: 31963377 (Dao et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/28707376/ PMID: 28707376 (Parisi et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/32846825/ PMID: 32846825 (Zhou et al., 2020)
Asghar, A., & Sheikh, N. (2017, May). Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol, 315, 18-26. https://doi.org/10.1016/j.cellimm.2017.03.001
Caramelo, F., Ferreira, N., & Oliveiros, B. (2020). Estimation of risk factors for COVID-19 mortality - preliminary results. medRxiv, 2020.2002.2024.20027268. https://doi.org/10.1101/2020.02.24.20027268
Dao, M. C., Saltzman, E., Page, M., Reece, J., Mojtahed, T., Wu, D., & Meydani, S. N. (2020, Jan 16). Lack of Differences in Inflammation and T Cell-Mediated Function between Young and Older Women with Obesity. Nutrients, 12(1). https://doi.org/10.3390/nu12010237
Dixon, A. E., & Peters, U. (2018, Sep). The effect of obesity on lung function. Expert Rev Respir Med, 12(9), 755-767. https://doi.org/10.1080/17476348.2018.1506331
Fezeu, L., Julia, C., Henegar, A., Bitu, J., Hu, F. B., Grobbee, D. E., Kengne, A. P., Hercberg, S., & Czernichow, S. (2011, Aug). Obesity is associated with higher risk of intensive care unit admission and death in influenza A (H1N1) patients: a systematic review and meta-analysis. Obes Rev, 12(8), 653-659. https://doi.org/10.1111/j.1467-789X.2011.00864.x
Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panourgia, M. P., Invidia, L., Celani, L., Scurti, M., Cevenini, E., Castellani, G. C., & Salvioli, S. (2007, Jan). Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev, 128(1), 92-105. https://doi.org/10.1016/j.mad.2006.11.016
Honce, R., Karlsson, E. A., Wohlgemuth, N., Estrada, L. D., Meliopoulos, V. A., Yao, J., & Schultz-Cherry, S. (2020, Mar 3). Obesity-Related Microenvironment Promotes Emergence of Virulent Influenza Virus Strains. mBio, 11(2). https://doi.org/10.1128/mBio.03341-19
Honce, R., & Schultz-Cherry, S. (2019a). Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol, 10, 1071. https://doi.org/10.3389/fimmu.2019.01071
Honce, R., & Schultz-Cherry, S. (2019b, May 10). Influenza in obese travellers: increased risk and complications, decreased vaccine effectiveness. J Travel Med, 26(3). https://doi.org/10.1093/jtm/taz020
Hunsche, C., Hernandez, O., & De la Fuente, M. (2016, Aug). Impaired Immune Response in Old Mice Suffering from Obesity and Premature Immunosenescence in Adulthood. J Gerontol A Biol Sci Med Sci, 71(8), 983-991. https://doi.org/10.1093/gerona/glv082
Morgan, O. W., Bramley, A., Fowlkes, A., Freedman, D. S., Taylor, T. H., Gargiullo, P., Belay, B., Jain, S., Cox, C., Kamimoto, L., Fiore, A., Finelli, L., Olsen, S. J., & Fry, A. M. (2010, Mar 15). Morbid obesity as a risk factor for hospitalization and death due to 2009 pandemic influenza A(H1N1) disease. PLoS One, 5(3), e9694. https://doi.org/10.1371/journal.pone.0009694
Moser, J. S., Galindo-Fraga, A., Ortiz-Hernández, A. A., Gu, W., Hunsberger, S., Galán-Herrera, J. F., Guerrero, M. L., Ruiz-Palacios, G. M., & Beigel, J. H. (2019, Jan). Underweight, overweight, and obesity as independent risk factors for hospitalization in adults and children from influenza and other respiratory viruses. Influenza Other Respir Viruses, 13(1), 3-9. https://doi.org/10.1111/irv.12618
Parisi, M. M., Grun, L. K., Lavandoski, P., Alves, L. B., Bristot, I. J., Mattiello, R., Mottin, C. C., Klamt, F., Jones, M. H., Padoin, A. V., Guma, F. C. R., & Barbé-Tuana, F. M. (2017, Sep). Immunosenescence Induced by Plasma from Individuals with Obesity Caused Cell Signaling Dysfunction and Inflammation. Obesity (Silver Spring), 25(9), 1523-1531. https://doi.org/10.1002/oby.21888
Ryan, P. M., & Caplice, N. M. (2020, Jul). Is Adipose Tissue a Reservoir for Viral Spread, Immune Activation, and Cytokine Amplification in Coronavirus Disease 2019? Obesity (Silver Spring), 28(7), 1191-1194. https://doi.org/10.1002/oby.22843
Simonnet, A., Chetboun, M., Poissy, J., Raverdy, V., Noulette, J., Duhamel, A., Labreuche, J., Mathieu, D., Pattou, F., & Jourdain, M. (2020, Jul). High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity (Silver Spring), 28(7), 1195-1199. https://doi.org/10.1002/oby.22831
Zhou, J., Sun, J., Cao, Z., Wang, W., Huang, K., Zheng, F., Xie, Y., Jiang, D., & Zhou, Z. (2020, Aug 21). Epidemiological and clinical features of 201 COVID-19 patients in Changsha city, Hunan, China. Medicine (Baltimore), 99(34), e21824. https://doi.org/10.1097/md.0000000000021824
Chapitre 6 - Sommeil et immunité
https://pubmed.ncbi.nlm.nih.gov/22215915/ PMID: 22215915 (Teodorescu & Teodorescu, 2012)
https://pubmed.ncbi.nlm.nih.gov/23099140/ PMID: 23099140 (Gamaldo et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/26417606/ PMID: 26417606 (Ibarra-Coronado et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/31289370/ PMID: 31289370 (Irwin, 2019)
https://www.ncbi.nlm.nih.gov/pubmed/2562046 (Brown et al., 1989)
https://pubmed.ncbi.nlm.nih.gov/26118561/ PMID: 26118561 (Prather et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/22215923/ PMID: 22215923 (Patel et al., 2012)
https://www.ncbi.nlm.nih.gov/pubmed/20469800 (Cappuccio et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/19139325/ (Cohen et al., 2009)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875524/ (Gomi, 2019)
https://pubmed.ncbi.nlm.nih.gov/32512133/ PMID: 32512133 (Zhang et al., 2020)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284237 (Chen et al., 2020)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7320269/ (Gao & Scullin, 2020)
https://pubmed.ncbi.nlm.nih.gov/29555130/ PMID: 29555130 (Bhat et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/20699115/ PMID: 20699115 (Faraut et al., 2011)
https://pubmed.ncbi.nlm.nih.gov/25668196/ PMID: 25668196 (Faraut et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/28162893/ PMID: 28162893 (Stothard et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/26193624/ PMID: 26193624 (Grigsby-Toussaint et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/26375320/ PMID: 26375320 (Cho et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/28017916/ PMID: 28017916 (Heo et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/29101797/ PMID: 29101797 (Shechter et al., 2018)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561068/ (Barsam et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/22467989/ PMID: 22467989 (Valham et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/30853037/ PMID: 30853037 (Lopes et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/31386152/ PMID: 31386152 (Spadola et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/24235903/ PMID: 24235903 (Drake et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/28919335/ PMID: 28919335 (Kovacevic et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/28276627/ PMID: 28276627 (Kelley & Kelley, 2017)
Barsam, T., Monazzam, M. R., Haghdoost, A. A., Ghotbi, M. R., & Dehghan, S. F. (2012, Nov 30). Effect of extremely low frequency electromagnetic field exposure on sleep quality in high voltage substations. Iranian J Environ Health Sci Eng, 9(1), 15. https://doi.org/10.1186/1735-2746-9-15
Bhat, S., Pinto-Zipp, G., Upadhyay, H., & Polos, P. G. (2018, Apr). "To sleep, perchance to tweet": in-bed electronic social media use and its associations with insomnia, daytime sleepiness, mood, and sleep duration in adults. Sleep Health, 4(2), 166-173. https://doi.org/10.1016/j.sleh.2017.12.004
Brown, R., Pang, G., Husband, A. J., & King, M. G. (1989, Sep-Oct). Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg Immunol, 2(5), 321-325.
Cappuccio, F. P., D'Elia, L., Strazzullo, P., & Miller, M. A. (2010, May). Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep, 33(5), 585-592. https://doi.org/10.1093/sleep/33.5.585
Chen, Y., Zhao, A., Xia, Y., Lyu, J., Ye, X., Liu, N., & Li, S. (2020, Aug). In the big picture of COVID-19 pandemic: what can sleep do. Sleep Med, 72, 109-110. https://doi.org/10.1016/j.sleep.2020.06.009
Cho, Y., Ryu, S. H., Lee, B. R., Kim, K. H., Lee, E., & Choi, J. (2015). Effects of artificial light at night on human health: A literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int, 32(9), 1294-1310. https://doi.org/10.3109/07420528.2015.1073158
Cohen, S., Doyle, W. J., Alper, C. M., Janicki-Deverts, D., & Turner, R. B. (2009, Jan 12). Sleep habits and susceptibility to the common cold. Arch Intern Med, 169(1), 62-67. https://doi.org/10.1001/archinternmed.2008.505
Drake, C., Roehrs, T., Shambroom, J., & Roth, T. (2013, Nov 15). Caffeine effects on sleep taken 0, 3, or 6 hours before going to bed. J Clin Sleep Med, 9(11), 1195-1200. https://doi.org/10.5664/jcsm.3170
Faraut, B., Boudjeltia, K. Z., Dyzma, M., Rousseau, A., David, E., Stenuit, P., Franck, T., Van Antwerpen, P., Vanhaeverbeek, M., & Kerkhofs, M. (2011, Jan). Benefits of napping and an extended duration of recovery sleep on alertness and immune cells after acute sleep restriction. Brain Behav Immun, 25(1), 16-24. https://doi.org/10.1016/j.bbi.2010.08.001
Faraut, B., Nakib, S., Drogou, C., Elbaz, M., Sauvet, F., De Bandt, J. P., & Léger, D. (2015, Mar). Napping reverses the salivary interleukin-6 and urinary norepinephrine changes induced by sleep restriction. J Clin Endocrinol Metab, 100(3), E416-426. https://doi.org/10.1210/jc.2014-2566
Gamaldo, C. E., Shaikh, A. K., & McArthur, J. C. (2012, Nov). The sleep-immunity relationship. Neurol Clin, 30(4), 1313-1343. https://doi.org/10.1016/j.ncl.2012.08.007
Gao, C., & Scullin, M. K. (2020, Sep). Sleep health early in the coronavirus disease 2019 (COVID-19) outbreak in the United States: integrating longitudinal, cross-sectional, and retrospective recall data. Sleep Med, 73, 1-10. https://doi.org/10.1016/j.sleep.2020.06.032
Gomi, S. (2019, Nov). Short-term insomnia and common cold: A cross-sectional study. J Gen Fam Med, 20(6), 244-250. https://doi.org/10.1002/jgf2.278
Grigsby-Toussaint, D. S., Turi, K. N., Krupa, M., Williams, N. J., Pandi-Perumal, S. R., & Jean-Louis, G. (2015, Sep). Sleep insufficiency and the natural environment: Results from the US Behavioral Risk Factor Surveillance System survey. Prev Med, 78, 78-84. https://doi.org/10.1016/j.ypmed.2015.07.011
Heo, J. Y., Kim, K., Fava, M., Mischoulon, D., Papakostas, G. I., Kim, M. J., Kim, D. J., Chang, K. J., Oh, Y., Yu, B. H., & Jeon, H. J. (2017, Apr). Effects of smartphone use with and without blue light at night in healthy adults: A randomized, double-blind, cross-over, placebo-controlled comparison. J Psychiatr Res, 87, 61-70. https://doi.org/10.1016/j.jpsychires.2016.12.010
Ibarra-Coronado, E. G., Pantaleón-Martínez, A. M., Velazquéz-Moctezuma, J., Prospéro-García, O., Méndez-Díaz, M., Pérez-Tapia, M., Pavón, L., & Morales-Montor, J. (2015). The Bidirectional Relationship between Sleep and Immunity against Infections. J Immunol Res, 2015, 678164. https://doi.org/10.1155/2015/678164
Irwin, M. R. (2019, Nov). Sleep and inflammation: partners in sickness and in health. Nat Rev Immunol, 19(11), 702-715. https://doi.org/10.1038/s41577-019-0190-z
Kelley, G. A., & Kelley, K. S. (2017, Feb). Exercise and sleep: a systematic review of previous meta-analyses. J Evid Based Med, 10(1), 26-36. https://doi.org/10.1111/jebm.12236
Kovacevic, A., Mavros, Y., Heisz, J. J., & Fiatarone Singh, M. A. (2018, Jun). The effect of resistance exercise on sleep: A systematic review of randomized controlled trials. Sleep Med Rev, 39, 52-68. https://doi.org/10.1016/j.smrv.2017.07.002
Lopes, T., Borba, M. E., Lopes, R., Fisberg, R. M., Lemos Paim, S., Vasconcelos Teodoro, V., Zalcman Zimberg, I., & Crispim, C. A. (2019, Mar 15). Eating Late Negatively Affects Sleep Pattern and Apnea Severity in Individuals With Sleep Apnea. J Clin Sleep Med, 15(3), 383-392. https://doi.org/10.5664/jcsm.7658
Patel, S. R., Malhotra, A., Gao, X., Hu, F. B., Neuman, M. I., & Fawzi, W. W. (2012, Jan 1). A prospective study of sleep duration and pneumonia risk in women. Sleep, 35(1), 97-101. https://doi.org/10.5665/sleep.1594
Prather, A. A., Janicki-Deverts, D., Hall, M. H., & Cohen, S. (2015, Sep 1). Behaviorally Assessed Sleep and Susceptibility to the Common Cold. Sleep, 38(9), 1353-1359. https://doi.org/10.5665/sleep.4968
Shechter, A., Kim, E. W., St-Onge, M. P., & Westwood, A. J. (2018, Jan). Blocking nocturnal blue light for insomnia: A randomized controlled trial. J Psychiatr Res, 96, 196-202. https://doi.org/10.1016/j.jpsychires.2017.10.015
Spadola, C. E., Guo, N., Johnson, D. A., Sofer, T., Bertisch, S. M., Jackson, C. L., Rueschman, M., Mittleman, M. A., Wilson, J. G., & Redline, S. (2019, Oct 21). Evening intake of alcohol, caffeine, and nicotine: night-to-night associations with sleep duration and continuity among African Americans in the Jackson Heart Sleep Study. Sleep, 42(11). https://doi.org/10.1093/sleep/zsz136
Stothard, E. R., McHill, A. W., Depner, C. M., Birks, B. R., Moehlman, T. M., Ritchie, H. K., Guzzetti, J. R., Chinoy, E. D., LeBourgeois, M. K., Axelsson, J., & Wright, K. P., Jr. (2017, Feb 20). Circadian Entrainment to the Natural Light-Dark Cycle across Seasons and the Weekend. Curr Biol, 27(4), 508-513. https://doi.org/10.1016/j.cub.2016.12.041
Teodorescu, M. C., & Teodorescu, M. (2012, Jan 1). Tired and sick. Sleep, 35(1), 15-16. https://doi.org/10.5665/sleep.1578
Valham, F., Sahlin, C., Stenlund, H., & Franklin, K. A. (2012, Apr 1). Ambient temperature and obstructive sleep apnea: effects on sleep, sleep apnea, and morning alertness. Sleep, 35(4), 513-517. https://doi.org/10.5665/sleep.1736
Zhang, J., Xu, D., Xie, B., Zhang, Y., Huang, H., Liu, H., Chen, H., Sun, Y., Shang, Y., Hashimoto, K., & Yuan, S. (2020, Aug). Poor-sleep is associated with slow recovery from lymphopenia and an increased need for ICU care in hospitalized patients with COVID-19: A retrospective cohort study. Brain Behav Immun, 88, 50-58. https://doi.org/10.1016/j.bbi.2020.05.075
Chapitre 7 - Stress et immunité
https://pubmed.ncbi.nlm.nih.gov/15250815/ PMID: 15250815 (Segerstrom & Miller, 2004)
https://pubmed.ncbi.nlm.nih.gov/21094928/ PMID: 21094928 (Marshall, 2011)
Klein TW. Stress and infections. J Fla Med Assoc. 1993;80(6):409-411 (Klein, 1993)
https://pubmed.ncbi.nlm.nih.gov/20360883/ PMID: 20360883 (Aich et al., 2009)
https://pubmed.ncbi.nlm.nih.gov/28670311/ PMID: 28670311 (Buric et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/7551414/ PMID: 7551414 (Cohen, 1995)
https://pubmed.ncbi.nlm.nih.gov/1713648/ PMID: 1713648 (Cohen et al., 1991)
https://pubmed.ncbi.nlm.nih.gov/31645334/ PMID: 31645334 (Song et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/29922828/ PMID: 29922828 (Song et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/20716708/ PMID: 20716708 (Pedersen et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/23020744/ PMID: 23020744 (Campisi et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/12883117/ PMID: 12883117 (Cohen et al., 2003)
https://pubmed.ncbi.nlm.nih.gov/17101814/ PMID: 17101814 (Cohen et al., 2006)
https://pubmed.ncbi.nlm.nih.gov/30102966/ PMID: 30102966 (Dantzer et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/21852890/ PMID: 21852890 (Fredrickson & Levenson, 1998)
https://pubmed.ncbi.nlm.nih.gov/25526910/ PMID: 25526910 (Cohen et al., 2015)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323947/ (Cohen et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/28670311/ PMID: 28670311 (Buric et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/15750361/ PMID: 15750361 (Li et al., 2005)
https://pubmed.ncbi.nlm.nih.gov/22778122/ PMID: 22778122 (Barrett et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/29933369/ PMID: 29933369 (Barrett et al., 2018)
https://pubmed.ncbi.nlm.nih.gov/26181573/ PMID: 26181573 (Lim & Cheong, 2015)
https://pubmed.ncbi.nlm.nih.gov/18166119/ PMID: 18166119 (Sinha et al., 2007)
https://pubmed.ncbi.nlm.nih.gov/32669762/ PMID: 32669762 (Nagarathna et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/20594090/ PMID: 20594090 (Jahnke et al., 2010)
https://www.tandfonline.com/doi/abs/10.1080/14768320500105346 (Brosschot & van der Doef, 2006)
Aich, P., Potter, A. A., & Griebel, P. J. (2009, Jul 30). Modern approaches to understanding stress and disease susceptibility: A review with special emphasis on respiratory disease. Int J Gen Med, 2, 19-32. https://doi.org/10.2147/ijgm.s4843
Barrett, B., Hayney, M. S., Muller, D., Rakel, D., Brown, R., Zgierska, A. E., Barlow, S., Hayer, S., Barnet, J. H., Torres, E. R., & Coe, C. L. (2018). Meditation or exercise for preventing acute respiratory infection (MEPARI-2): A randomized controlled trial. PLoS One, 13(6), e0197778. https://doi.org/10.1371/journal.pone.0197778
Barrett, B., Hayney, M. S., Muller, D., Rakel, D., Ward, A., Obasi, C. N., Brown, R., Zhang, Z., Zgierska, A., Gern, J., West, R., Ewers, T., Barlow, S., Gassman, M., & Coe, C. L. (2012, Jul-Aug). Meditation or exercise for preventing acute respiratory infection: a randomized controlled trial. Ann Fam Med, 10(4), 337-346. https://doi.org/10.1370/afm.1376
Brosschot, J. F., & van der Doef, M. (2006, 2006/02/01). Daily worrying and somatic health complaints: Testing the effectiveness of a simple worry reduction intervention. Psychology & Health, 21(1), 19-31. https://doi.org/10.1080/14768320500105346
Buric, I., Farias, M., Jong, J., Mee, C., & Brazil, I. A. (2017). What Is the Molecular Signature of Mind-Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices. Front Immunol, 8, 670. https://doi.org/10.3389/fimmu.2017.00670
Campisi, J., Bynog, P., McGehee, H., Oakland, J. C., Quirk, S., Taga, C., & Taylor, M. (2012, Dec). Facebook, stress, and incidence of upper respiratory infection in undergraduate college students. Cyberpsychol Behav Soc Netw, 15(12), 675-681. https://doi.org/10.1089/cyber.2012.0156
Cohen, S. (1995, Oct). Psychological stress and susceptibility to upper respiratory infections. Am J Respir Crit Care Med, 152(4 Pt 2), S53-58. https://doi.org/10.1164/ajrccm/152.4_Pt_2.S53
Cohen, S., Alper, C. M., Doyle, W. J., Treanor, J. J., & Turner, R. B. (2006, Nov-Dec). Positive emotional style predicts resistance to illness after experimental exposure to rhinovirus or influenza a virus. Psychosom Med, 68(6), 809-815. https://doi.org/10.1097/01.psy.0000245867.92364.3c
Cohen, S., Doyle, W. J., Turner, R. B., Alper, C. M., & Skoner, D. P. (2003, Jul-Aug). Emotional style and susceptibility to the common cold. Psychosom Med, 65(4), 652-657. https://doi.org/10.1097/01.psy.0000077508.57784.da
Cohen, S., Janicki-Deverts, D., Turner, R. B., & Doyle, W. J. (2015, Feb). Does hugging provide stress-buffering social support? A study of susceptibility to upper respiratory infection and illness. Psychol Sci, 26(2), 135-147. https://doi.org/10.1177/0956797614559284
Cohen, S., Tyrrell, D. A., & Smith, A. P. (1991, Aug 29). Psychological stress and susceptibility to the common cold. N Engl J Med, 325(9), 606-612. https://doi.org/10.1056/nejm199108293250903
Dantzer, R., Cohen, S., Russo, S. J., & Dinan, T. G. (2018, Nov). Resilience and immunity. Brain Behav Immun, 74, 28-42. https://doi.org/10.1016/j.bbi.2018.08.010
Fredrickson, B. L., & Levenson, R. W. (1998, Mar 1). Positive Emotions Speed Recovery from the Cardiovascular Sequelae of Negative Emotions. Cogn Emot, 12(2), 191-220. https://doi.org/10.1080/026999398379718
Jahnke, R., Larkey, L., Rogers, C., Etnier, J., & Lin, F. (2010, Jul-Aug). A comprehensive review of health benefits of qigong and tai chi. Am J Health Promot, 24(6), e1-e25. https://doi.org/10.4278/ajhp.081013-LIT-248
Klein, T. W. (1993, Jun). Stress and infections. J Fla Med Assoc, 80(6), 409-411.
Li, Q. Z., Li, P., Garcia, G. E., Johnson, R. J., & Feng, L. (2005, Feb). Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction. J Altern Complement Med, 11(1), 29-39. https://doi.org/10.1089/acm.2005.11.29
Lim, S. A., & Cheong, K. J. (2015, Sep). Regular Yoga Practice Improves Antioxidant Status, Immune Function, and Stress Hormone Releases in Young Healthy People: A Randomized, Double-Blind, Controlled Pilot Study. J Altern Complement Med, 21(9), 530-538. https://doi.org/10.1089/acm.2014.0044
Marshall, G. D., Jr. (2011, Feb). The adverse effects of psychological stress on immunoregulatory balance: applications to human inflammatory diseases. Immunol Allergy Clin North Am, 31(1), 133-140. https://doi.org/10.1016/j.iac.2010.09.013
Nagarathna, R., Nagendra, H. R., & Majumdar, V. (2020, May-Aug). A Perspective on Yoga as a Preventive Strategy for Coronavirus Disease 2019. Int J Yoga, 13(2), 89-98. https://doi.org/10.4103/ijoy.IJOY_22_20
Pedersen, A., Zachariae, R., & Bovbjerg, D. H. (2010, Oct). Influence of psychological stress on upper respiratory infection--a meta-analysis of prospective studies. Psychosom Med, 72(8), 823-832. https://doi.org/10.1097/PSY.0b013e3181f1d003
Segerstrom, S. C., & Miller, G. E. (2004, Jul). Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull, 130(4), 601-630. https://doi.org/10.1037/0033-2909.130.4.601
Sinha, S., Singh, S. N., Monga, Y. P., & Ray, U. S. (2007, Dec). Improvement of glutathione and total antioxidant status with yoga. J Altern Complement Med, 13(10), 1085-1090. https://doi.org/10.1089/acm.2007.0567
Song, H., Fall, K., Fang, F., Erlendsdóttir, H., Lu, D., Mataix-Cols, D., Fernández de la Cruz, L., D'Onofrio, B. M., Lichtenstein, P., Gottfreðsson, M., Almqvist, C., & Valdimarsdóttir, U. A. (2019, Oct 23). Stress related disorders and subsequent risk of life threatening infections: population based sibling controlled cohort study. Bmj, 367, l5784. https://doi.org/10.1136/bmj.l5784
Song, H., Fang, F., Tomasson, G., Arnberg, F. K., Mataix-Cols, D., Fernández de la Cruz, L., Almqvist, C., Fall, K., & Valdimarsdóttir, U. A. (2018, Jun 19). Association of Stress-Related Disorders With Subsequent Autoimmune Disease. Jama, 319(23), 2388-2400. https://doi.org/10.1001/jama.2018.7028
Chapitre 8 - Activité physique et immunité
https://www.sciencedirect.com/science/article/pii/S2314853513000334 (Mohamady et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/11447362/ PMID: 11447362 (Bermon et al., 2001)
https://pubmed.ncbi.nlm.nih.gov/31454519/ PMID: 31454519 (Khosravi et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/17071161/ PMID: 17071161 (Chubak et al., 2006)
https://pubmed.ncbi.nlm.nih.gov/16444091/ PMID: 16444091 (Ciloğlu, 2005)
https://pubmed.ncbi.nlm.nih.gov/8350705/ PMID: 8350705 (Nieman et al., 1993)
https://pubmed.ncbi.nlm.nih.gov/32513197/ PMID: 32513197 (Di Renzo et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32481594/ PMID: 32481594 (Ammar et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32412779/ PMID: 32412779 (Peçanha et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32571612/ PMID: 32571612 (Mattioli et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32842905/ PMID: 32842905 (Khoramipour et al., 2021)
https://pubmed.ncbi.nlm.nih.gov/32470443/ PMID: 32470443 (Carvalho & Gois, 2020)
https://pubmed.ncbi.nlm.nih.gov/19568839/ PMID: 19568839 (Li, 2010)
https://pubmed.ncbi.nlm.nih.gov/18336737/ PMID: 18336737 (Li et al., 2008)
https://pubmed.ncbi.nlm.nih.gov/20487629/ PMID: 20487629 (Li et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/32842905/ PMID: 32842905 (Khoramipour et al., 2021)
Ammar, A., Brach, M., Trabelsi, K., Chtourou, H., Boukhris, O., Masmoudi, L., Bouaziz, B., Bentlage, E., How, D., Ahmed, M., Müller, P., Müller, N., Aloui, A., Hammouda, O., Paineiras-Domingos, L. L., Braakman-Jansen, A., Wrede, C., Bastoni, S., Pernambuco, C. S., Mataruna, L., Taheri, M., Irandoust, K., Khacharem, A., Bragazzi, N. L., Chamari, K., Glenn, J. M., Bott, N. T., Gargouri, F., Chaari, L., Batatia, H., Ali, G. M., Abdelkarim, O., Jarraya, M., Abed, K. E., Souissi, N., Van Gemert-Pijnen, L., Riemann, B. L., Riemann, L., Moalla, W., Gómez-Raja, J., Epstein, M., Sanderman, R., Schulz, S. V., Jerg, A., Al-Horani, R., Mansi, T., Jmail, M., Barbosa, F., Ferreira-Santos, F., Šimunič, B., Pišot, R., Gaggioli, A., Bailey, S. J., Steinacker, J. M., Driss, T., & Hoekelmann, A. (2020, May 28). Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients, 12(6). https://doi.org/10.3390/nu12061583
Bermon, S., Philip, P., Candito, M., Ferrari, P., & Dolisi, C. (2001, Jun). Effects of strength exercise and training on the natural killer cell counts in elderly humans. J Sports Med Phys Fitness, 41(2), 196-202.
Carvalho, V. O., & Gois, C. O. (2020, Sep). COVID-19 pandemic and home-based physical activity. J Allergy Clin Immunol Pract, 8(8), 2833-2834. https://doi.org/10.1016/j.jaip.2020.05.018
Chubak, J., McTiernan, A., Sorensen, B., Wener, M. H., Yasui, Y., Velasquez, M., Wood, B., Rajan, K. B., Wetmore, C. M., Potter, J. D., & Ulrich, C. M. (2006, Nov). Moderate-intensity exercise reduces the incidence of colds among postmenopausal women. Am J Med, 119(11), 937-942. https://doi.org/10.1016/j.amjmed.2006.06.033
Ciloğlu, F. (2005). The effect of exercise on salivary IgA levels and the incidence of upper respiratory tract infections in postmenopausal women. Kulak Burun Bogaz Ihtis Derg, 15(5-6), 112-116.
Di Renzo, L., Gualtieri, P., Pivari, F., Soldati, L., Attinà, A., Cinelli, G., Leggeri, C., Caparello, G., Barrea, L., Scerbo, F., Esposito, E., & De Lorenzo, A. (2020, Jun 8). Eating habits and lifestyle changes during COVID-19 lockdown: an Italian survey. J Transl Med, 18(1), 229. https://doi.org/10.1186/s12967-020-02399-5
Khoramipour, K., Basereh, A., Hekmatikar, A. A., Castell, L., Ruhee, R. T., & Suzuki, K. (2021, Jan). Physical activity and nutrition guidelines to help with the fight against COVID-19. J Sports Sci, 39(1), 101-107. https://doi.org/10.1080/02640414.2020.1807089
Khosravi, N., Stoner, L., Farajivafa, V., & Hanson, E. D. (2019, Oct). Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain Behav Immun, 81, 92-104. https://doi.org/10.1016/j.bbi.2019.08.187
Li, Q. (2010, Jan). Effect of forest bathing trips on human immune function. Environ Health Prev Med, 15(1), 9-17. https://doi.org/10.1007/s12199-008-0068-3
Li, Q., Kobayashi, M., Inagaki, H., Hirata, Y., Li, Y. J., Hirata, K., Shimizu, T., Suzuki, H., Katsumata, M., Wakayama, Y., Kawada, T., Ohira, T., Matsui, N., & Kagawa, T. (2010, Apr-Jun). A day trip to a forest park increases human natural killer activity and the expression of anti-cancer proteins in male subjects. J Biol Regul Homeost Agents, 24(2), 157-165.
Li, Q., Morimoto, K., Kobayashi, M., Inagaki, H., Katsumata, M., Hirata, Y., Hirata, K., Suzuki, H., Li, Y. J., Wakayama, Y., Kawada, T., Park, B. J., Ohira, T., Matsui, N., Kagawa, T., Miyazaki, Y., & Krensky, A. M. (2008, Jan-Mar). Visiting a forest, but not a city, increases human natural killer activity and expression of anti-cancer proteins. Int J Immunopathol Pharmacol, 21(1), 117-127. https://doi.org/10.1177/039463200802100113
Mattioli, A. V., Sciomer, S., Cocchi, C., Maffei, S., & Gallina, S. (2020, Aug 28). Quarantine during COVID-19 outbreak: Changes in diet and physical activity increase the risk of cardiovascular disease. Nutr Metab Cardiovasc Dis, 30(9), 1409-1417. https://doi.org/10.1016/j.numecd.2020.05.020
Mohamady, T. M., Borhan, W. H., Abdallah, W., & AbdelGhani, S. (2013, 2013/06/01/). Effect of selected exercise program on natural killer cytotoxic cells activity of post-mastectomy patients. Beni-Suef University Journal of Basic and Applied Sciences, 2(2), 114-119. https://doi.org/https://doi.org/10.1016/j.bjbas.2013.03.003
Nieman, D. C., Henson, D. A., Gusewitch, G., Warren, B. J., Dotson, R. C., Butterworth, D. E., & Nehlsen-Cannarella, S. L. (1993, Jul). Physical activity and immune function in elderly women. Med Sci Sports Exerc, 25(7), 823-831. https://doi.org/10.1249/00005768-199307000-00011
Peçanha, T., Goessler, K. F., Roschel, H., & Gualano, B. (2020, Jun 1). Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am J Physiol Heart Circ Physiol, 318(6), H1441-h1446. https://doi.org/10.1152/ajpheart.00268.2020
Chapitre 9 - Alimentation et immunité
https://pubmed.ncbi.nlm.nih.gov/30911129/ PMID: 30911129 (Christ & Latz, 2019)
https://pubmed.ncbi.nlm.nih.gov/31747581/ PMID: 31747581 (Christ et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/30808756/ PMID: 30808756 (Napier et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/28298267/ PMID: 28298267 (Emerson et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/32221603/ PMID: 32221603 (Wisnuwardani et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/16857842/ PMID: 16857842 (Thompson et al., 2006)
https://pubmed.ncbi.nlm.nih.gov/20335546/ PMID: 20335546 (Birlouez-Aragon et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/21992535/ PMID: 21992535 (Paoli et al., 2011)
https://pubmed.ncbi.nlm.nih.gov/24352095/ PMID: 24352095 (Paoli et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/29693607/ PMID: 29693607 (Toribio-Mateas, 2018)
http://www.nrcresearchpress.com/doi/abs/10.1139/h11-120#.VJiUyWcABA (S. et al., 2011)
https://pubmed.ncbi.nlm.nih.gov/20210607/ PMID: 20210607 (Majdalawieh & Carr, 2010)
https://pubmed.ncbi.nlm.nih.gov/12946445/ PMID: 12946445 (Hassan et al., 2003)
https://pubmed.ncbi.nlm.nih.gov/27112424/ PMID: 27112424 (Kim et al., 2016)
https://www.academia.edu/5743487Immunomodulatory_potential_of_Curcuma_longa_A_review (Mehrotra et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/24299844/ PMID: 24299844 (Huyan et al., 2014)
https://pubmed.ncbi.nlm.nih.gov/23244540/ PMID: 23244540 (Faris et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/28137612/ PMID: 28137612 (Choi et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/26094889/ PMID: 26094889 (Brandhorst et al., 2015)
https://pubmed.ncbi.nlm.nih.gov/32659267/ PMID: 32659267 (Hannan et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/31442398/ PMID: 31442398 (Buono & Longo, 2019)
Birlouez-Aragon, I., Saavedra, G., Tessier, F. J., Galinier, A., Ait-Ameur, L., Lacoste, F., Niamba, C. N., Alt, N., Somoza, V., & Lecerf, J. M. (2010, May). A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases. Am J Clin Nutr, 91(5), 1220-1226. https://doi.org/10.3945/ajcn.2009.28737
Brandhorst, S., Choi, I. Y., Wei, M., Cheng, C. W., Sedrakyan, S., Navarrete, G., Dubeau, L., Yap, L. P., Park, R., Vinciguerra, M., Di Biase, S., Mirzaei, H., Mirisola, M. G., Childress, P., Ji, L., Groshen, S., Penna, F., Odetti, P., Perin, L., Conti, P. S., Ikeno, Y., Kennedy, B. K., Cohen, P., Morgan, T. E., Dorff, T. B., & Longo, V. D. (2015, Jul 7). A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan. Cell Metab, 22(1), 86-99. https://doi.org/10.1016/j.cmet.2015.05.012
Buono, R., & Longo, V. D. (2019, Aug 22). When Fasting Gets Tough, the Tough Immune Cells Get Going-or Die. Cell, 178(5), 1038-1040. https://doi.org/10.1016/j.cell.2019.07.052
Choi, I. Y., Lee, C., & Longo, V. D. (2017, Nov 5). Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol, 455, 4-12. https://doi.org/10.1016/j.mce.2017.01.042
Christ, A., & Latz, E. (2019, May). The Western lifestyle has lasting effects on metaflammation. Nat Rev Immunol, 19(5), 267-268. https://doi.org/10.1038/s41577-019-0156-1
Christ, A., Lauterbach, M., & Latz, E. (2019, Nov 19). Western Diet and the Immune System: An Inflammatory Connection. Immunity, 51(5), 794-811. https://doi.org/10.1016/j.immuni.2019.09.020
Emerson, S. R., Kurti, S. P., Harms, C. A., Haub, M. D., Melgarejo, T., Logan, C., & Rosenkranz, S. K. (2017, Mar). Magnitude and Timing of the Postprandial Inflammatory Response to a High-Fat Meal in Healthy Adults: A Systematic Review. Adv Nutr, 8(2), 213-225. https://doi.org/10.3945/an.116.014431
Faris, M. A., Kacimi, S., Al-Kurd, R. A., Fararjeh, M. A., Bustanji, Y. K., Mohammad, M. K., & Salem, M. L. (2012, Dec). Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr Res, 32(12), 947-955. https://doi.org/10.1016/j.nutres.2012.06.021
Hannan, M. A., Rahman, M. A., Rahman, M. S., Sohag, A. A. M., Dash, R., Hossain, K. S., Farjana, M., & Uddin, M. J. (2020, Oct). Intermittent fasting, a possible priming tool for host defense against SARS-CoV-2 infection: Crosstalk among calorie restriction, autophagy and immune response. Immunol Lett, 226, 38-45. https://doi.org/10.1016/j.imlet.2020.07.001
Hassan, Z. M., Yaraee, R., Zare, N., Ghazanfari, T., Sarraf Nejad, A. H., & Nazori, B. (2003, Oct). Immunomodulatory affect of R10 fraction of garlic extract on natural killer activity. Int Immunopharmacol, 3(10-11), 1483-1489. https://doi.org/10.1016/s1567-5769(03)00161-9
Huyan, T., Li, Q., Yang, H., Jin, M. L., Zhang, M. J., Ye, L. J., Li, J., Huang, Q. S., & Yin, D. C. (2014, Jan 30). Protective effect of polysaccharides on simulated microgravity-induced functional inhibition of human NK cells. Carbohydr Polym, 101, 819-827. https://doi.org/10.1016/j.carbpol.2013.10.021
Kim, Y. H., Won, Y. S., Yang, X., Kumazoe, M., Yamashita, S., Hara, A., Takagaki, A., Goto, K., Nanjo, F., & Tachibana, H. (2016, May 11). Green Tea Catechin Metabolites Exert Immunoregulatory Effects on CD4(+) T Cell and Natural Killer Cell Activities. J Agric Food Chem, 64(18), 3591-3597. https://doi.org/10.1021/acs.jafc.6b01115
Majdalawieh, A. F., & Carr, R. I. (2010, Apr). In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food, 13(2), 371-381. https://doi.org/10.1089/jmf.2009.1131
Mehrotra, S., Agnihotri, G., Singh, S., & Jamal, F. (2013, 01/01). Immunomodulatory potential of Curcuma longa: A review. 3, 299-307.
Napier, B. A., Andres-Terre, M., Massis, L. M., Hryckowian, A. J., Higginbottom, S. K., Cumnock, K., Casey, K. M., Haileselassie, B., Lugo, K. A., Schneider, D. S., Sonnenburg, J. L., & Monack, D. M. (2019, Feb 26). Western diet regulates immune status and the response to LPS-driven sepsis independent of diet-associated microbiome. Proc Natl Acad Sci U S A, 116(9), 3688-3694. https://doi.org/10.1073/pnas.1814273116
Paoli, A., Bianco, A., Grimaldi, K. A., Lodi, A., & Bosco, G. (2013, Dec 18). Long term successful weight loss with a combination biphasic ketogenic Mediterranean diet and Mediterranean diet maintenance protocol. Nutrients, 5(12), 5205-5217. https://doi.org/10.3390/nu5125205
Paoli, A., Cenci, L., & Grimaldi, K. A. (2011, Oct 12). Effect of ketogenic Mediterranean diet with phytoextracts and low carbohydrates/high-protein meals on weight, cardiovascular risk factors, body composition and diet compliance in Italian council employees. Nutr J, 10, 112. https://doi.org/10.1186/1475-2891-10-112
S., M., C., N., L., D., A., S., A., H., C., U., MilneGinger, & R., M. (2011). Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Applied Physiology, Nutrition, and Metabolism, 36(6), 976-984. https://doi.org/10.1139/h11-120 %M 22111516
Thompson, H. J., Heimendinger, J., Diker, A., O'Neill, C., Haegele, A., Meinecke, B., Wolfe, P., Sedlacek, S., Zhu, Z., & Jiang, W. (2006, Aug). Dietary botanical diversity affects the reduction of oxidative biomarkers in women due to high vegetable and fruit intake. J Nutr, 136(8), 2207-2212. https://doi.org/10.1093/jn/136.8.2207
Toribio-Mateas, M. (2018, Apr 25). Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms, 6(2). https://doi.org/10.3390/microorganisms6020035
Wisnuwardani, R. W., De Henauw, S., Ferrari, M., Forsner, M., Gottrand, F., Huybrechts, I., Kafatos, A. G., Kersting, M., Knaze, V., Manios, Y., Marcos, A., Molnár, D., Rothwell, J. A., Rupérez, A. I., Scalbert, A., Widhalm, K., Moreno, L. A., & Michels, N. (2020, Jun 1). Total Polyphenol Intake Is Inversely Associated with a Pro/Anti-Inflammatory Biomarker Ratio in European Adolescents of the HELENA Study. J Nutr, 150(6), 1610-1618. https://doi.org/10.1093/jn/nxaa064
Chapitre 10 - Supplémentation et immunité
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7352291/ (Iddir et al., 2020)
https://www.frontiersin.org/articles/10.3389/fphar.2020.01062/full (Acosta-Elias & Espinosa-Tanguma, 2020)
https://pubmed.ncbi.nlm.nih.gov/28202713/ PMID: 28202713 (Martineau et al., 2017)
https://www.insider.com/fauci-takes-recommends-vitamin-d-and-c-supplements-immunity-boost-2020-9
https://pubmed.ncbi.nlm.nih.gov/27861708/ PMID: 27861708 (Ginde et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/32941512/ PMID: 32941512 (Kaufman et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32700398/ PMID: 32700398 (Merzon et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32397511/ PMID: 32397511 (D'Avolio et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32927735/ PMID: 32927735 (Radujkovic et al., 2020)
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3616008 (Maghbooli et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32772324/ PMID: 32772324 (Carpagnano et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32855214/ PMID: 32855214 (Baktash et al., 2020)
https://www.medrxiv.org/content/10.1101/2020.05.01.20079376v2 (De Smet et al., 2020)
https://www.medigraphic.com/pdfs/sanmil/sm-2020/sm201_2za.pdf
https://pubmed.ncbi.nlm.nih.gov/32871238/ PMID: 32871238 (Entrenas Castillo et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32920234/ PMID: 32920234 (Jothimani et al., 2020)
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01712/full (Wessels et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32837891/ PMID: 32837891 (Aucoin, Cooley, Saunders, Cardozo, et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33034398/ PMID: 33034398 (Derosa et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32636851/ PMID: 32636851 (Derosa et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32653511/ PMID: 32653511 (Rogero et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/3263676/ PMID: 3263676 (Heinrichs et al., 1988)
https://pubmed.ncbi.nlm.nih.gov/32592716/ PMID: 32592716 (Bailly & Vergoten, 2020)
https://pubmed.ncbi.nlm.nih.gov/32837894/ PMID: 32837894 (Aucoin, Cooley, Saunders, Carè, et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32907596/ PMID: 32907596 (Signer et al., 2020)
https://www.biorxiv.org/content/10.1101/2020.09.24.285940v1 (Ellen ter et al., 2020)
https://www.medrxiv.org/content/10.1101/2020.07.21.20151423v1 (Mittra et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32395713/ PMID: 32395713 (Reiter et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32529477/ PMID: 32529477 (Meftahi et al., 2020)
https://www.medrxiv.org/content/10.1101/2020.10.15.20213546v1 (Ramlall et al., 2020)
Acosta-Elias, J., & Espinosa-Tanguma, R. (2020, 2020-July-16). The Folate Concentration and/or Folic Acid Metabolites in Plasma as Factor for COVID-19 Infection [Hypothesis and Theory]. Frontiers in Pharmacology, 11(1062). https://doi.org/10.3389/fphar.2020.01062
Aucoin, M., Cooley, K., Saunders, P. R., Cardozo, V., Remy, D., Cramer, H., Neyre Abad, C., & Hannan, N. (2020, Dec). The effect of quercetin on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv Integr Med, 7(4), 247-251. https://doi.org/10.1016/j.aimed.2020.07.007
Aucoin, M., Cooley, K., Saunders, P. R., Carè, J., Anheyer, D., Medina, D. N., Cardozo, V., Remy, D., Hannan, N., & Garber, A. (2020, Dec). The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: A rapid review. Adv Integr Med, 7(4), 203-217. https://doi.org/10.1016/j.aimed.2020.07.004
Bailly, C., & Vergoten, G. (2020, Oct). Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther, 214, 107618. https://doi.org/10.1016/j.pharmthera.2020.107618
Baktash, V., Hosack, T., Patel, N., Shah, S., Kandiah, P., Van den Abbeele, K., Mandal, A. K. J., & Missouris, C. G. (2020, Aug 27). Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad Med J. https://doi.org/10.1136/postgradmedj-2020-138712
Carpagnano, G. E., Di Lecce, V., Quaranta, V. N., Zito, A., Buonamico, E., Capozza, E., Palumbo, A., Di Gioia, G., Valerio, V. N., & Resta, O. (2020, Aug 9). Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest, 1-7. https://doi.org/10.1007/s40618-020-01370-x
D'Avolio, A., Avataneo, V., Manca, A., Cusato, J., De Nicolò, A., Lucchini, R., Keller, F., & Cantù, M. (2020, May 9). 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients, 12(5). https://doi.org/10.3390/nu12051359
De Smet, D., De Smet, K., Herroelen, P., Gryspeerdt, S., & Martens, G. A. (2020). Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. medRxiv, 2020.2005.2001.20079376. https://doi.org/10.1101/2020.05.01.20079376
Derosa, G., Maffioli, P., D'Angelo, A., & Di Pierro, F. (2020, Oct 9). A role for quercetin in coronavirus disease 2019 (COVID-19). Phytother Res. https://doi.org/10.1002/ptr.6887
Ellen ter, B. M., Dinesh Kumar, N., Bouma, E. M., Troost, B., Pol van de, D. P. I., Ende van der-Metselaar, H. H., Apperloo, L., Gosliga van, D., Berge van den, M., Nawijn, M. C., Voort van der, P. H. J., Moser, J., Rodenhuis-Zybert, I. A., & Smit, J. M. (2020). Resveratrol And Pterostilbene Potently Inhibit SARS-CoV-2 Infection In Vitro. bioRxiv, 2020.2009.2024.285940. https://doi.org/10.1101/2020.09.24.285940
Entrenas Castillo, M., Entrenas Costa, L. M., Vaquero Barrios, J. M., Alcalá Díaz, J. F., López Miranda, J., Bouillon, R., & Quesada Gomez, J. M. (2020, Oct). "Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study". J Steroid Biochem Mol Biol, 203, 105751. https://doi.org/10.1016/j.jsbmb.2020.105751
Ginde, A. A., Blatchford, P., Breese, K., Zarrabi, L., Linnebur, S. A., Wallace, J. I., & Schwartz, R. S. (2017, Mar). High-Dose Monthly Vitamin D for Prevention of Acute Respiratory Infection in Older Long-Term Care Residents: A Randomized Clinical Trial. J Am Geriatr Soc, 65(3), 496-503. https://doi.org/10.1111/jgs.14679
Heinrichs, C., Tabardel, Y., Frikiche, A., Senterre, J., & Geubelle, F. (1988, Aug 1-15). [The syndrome of hemorrhagic shock with encephalopathy: a new syndrome? Apropos of 2 cases]. Rev Med Liege, 43(15-16), 521-525. (Le syndrome de choc hémorragique avec encéphalopathie: un nouveau syndrome? A propos de 2 cas.)
Iddir, M., Brito, A., Dingeo, G., Fernandez Del Campo, S. S., Samouda, H., La Frano, M. R., & Bohn, T. (2020, May 27). Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients, 12(6). https://doi.org/10.3390/nu12061562
Jothimani, D., Kailasam, E., Danielraj, S., Nallathambi, B., Ramachandran, H., Sekar, P., Manoharan, S., Ramani, V., Narasimhan, G., Kaliamoorthy, I., & Rela, M. (2020, Nov). COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis, 100, 343-349. https://doi.org/10.1016/j.ijid.2020.09.014
Kaufman, H. W., Niles, J. K., Kroll, M. H., Bi, C., & Holick, M. F. (2020). SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One, 15(9), e0239252. https://doi.org/10.1371/journal.pone.0239252
Maghbooli, Z., Ebrahimi, M., Shirvani, A., Nasiri, M., Pazoki, M., Kafan, S., moradi tabriz, H., Hadadi, A., Montazeri, M., Sahraian, M., & Holick, M. (2020, 01/01). Vitamin D Sufficiency Reduced Risk for Morbidity and Mortality in COVID-19 Patients. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3616008
Martineau, A. R., Jolliffe, D. A., Hooper, R. L., Greenberg, L., Aloia, J. F., Bergman, P., Dubnov-Raz, G., Esposito, S., Ganmaa, D., Ginde, A. A., Goodall, E. C., Grant, C. C., Griffiths, C. J., Janssens, W., Laaksi, I., Manaseki-Holland, S., Mauger, D., Murdoch, D. R., Neale, R., Rees, J. R., Simpson, S., Jr., Stelmach, I., Kumar, G. T., Urashima, M., & Camargo, C. A., Jr. (2017, Feb 15). Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. Bmj, 356, i6583. https://doi.org/10.1136/bmj.i6583
Meftahi, G. H., Jangravi, Z., Sahraei, H., & Bahari, Z. (2020, Sep). The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of "inflame-aging". Inflamm Res, 69(9), 825-839. https://doi.org/10.1007/s00011-020-01372-8
Merzon, E., Tworowski, D., Gorohovski, A., Vinker, S., Golan Cohen, A., Green, I., & Frenkel-Morgenstern, M. (2020, Sep). Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: an Israeli population-based study. Febs j, 287(17), 3693-3702. https://doi.org/10.1111/febs.15495
Mittra, I., de Souza, R., Bhadade, R., Madke, T., Shankpal, P. D., Joshi, M., Qayyumi, B., Bhattacharjee, A., Gota, V., Gupta, S., Chaturvedi, P., & Badwe, R. (2020). Resveratrol and Copper for treatment of severe COVID-19: an observational study (RESCU 002). medRxiv, 2020.2007.2021.20151423. https://doi.org/10.1101/2020.07.21.20151423
Radujkovic, A., Hippchen, T., Tiwari-Heckler, S., Dreher, S., Boxberger, M., & Merle, U. (2020, Sep 10). Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients, 12(9). https://doi.org/10.3390/nu12092757
Ramlall, V., Zucker, J., & Tatonetti, N. (2020). Melatonin is significantly associated with survival of intubated COVID-19 patients. medRxiv, 2020.2010.2015.20213546. https://doi.org/10.1101/2020.10.15.20213546
Reiter, R. J., Sharma, R., Ma, Q., Dominquez-Rodriguez, A., Marik, P. E., & Abreu-Gonzalez, P. (2020, Jun). Melatonin Inhibits COVID-19-induced Cytokine Storm by Reversing Aerobic Glycolysis in Immune Cells: A Mechanistic Analysis. Med Drug Discov, 6, 100044. https://doi.org/10.1016/j.medidd.2020.100044
Rogero, M. M., Leão, M. C., Santana, T. M., Pimentel, M., Carlini, G. C. G., da Silveira, T. F. F., Gonçalves, R. C., & Castro, I. A. (2020, Aug 20). Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19. Free Radic Biol Med, 156, 190-199. https://doi.org/10.1016/j.freeradbiomed.2020.07.005
Signer, J., Jonsdottir, H. R., Albrich, W. C., Strasser, M., Züst, R., Ryter, S., Ackermann-Gäumann, R., Lenz, N., Siegrist, D., Suter, A., Schoop, R., & Engler, O. B. (2020, Sep 9). In vitro virucidal activity of Echinaforce®, an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2. Virol J, 17(1), 136. https://doi.org/10.1186/s12985-020-01401-2
Wessels, I., Rolles, B., & Rink, L. (2020, 2020-July-10). The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis [Perspective]. Frontiers in Immunology, 11(1712). https://doi.org/10.3389/fimmu.2020.01712
Chapitre 11 - Lien social et immunité
https://pubmed.ncbi.nlm.nih.gov/27732023/ PMID: 27732023 (Hedman et al., 2016)
https://pubmed.ncbi.nlm.nih.gov/20483842/ PMID: 20483842 (Schaller et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/29298938/ PMID: 29298938 (J. Axelsson et al., 2018)
https://doi.org/10.1098/rspb.2017.2430 (John Axelsson et al., 2018)
http://dx.doi.org/10.1177/0963721411402596 (Schaller & Park, 2011)
https://pubmed.ncbi.nlm.nih.gov/31600173/ PMID: 31600173 (Leschak & Eisenberger, 2019)
https://pubmed.ncbi.nlm.nih.gov/27480575/ PMID: 27480575 (Eisenberger et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/18055166/ PMID: 18055166 (Segerstrom, 2008)
Axelsson, J., Sundelin, T., Olsson, M. J., Sorjonen, K., Axelsson, C., Lasselin, J., & Lekander, M. (2018, Jan 10). Identification of acutely sick people and facial cues of sickness. Proc Biol Sci, 285(1870). https://doi.org/10.1098/rspb.2017.2430
Axelsson, J., Sundelin, T., Olsson, M. J., Sorjonen, K., Axelsson, C., Lasselin, J., & Lekander, M. (2018). Identification of acutely sick people and facial cues of sickness. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172430. https://doi.org/doi:10.1098/rspb.2017.2430
Eisenberger, N. I., Moieni, M., Inagaki, T. K., Muscatell, K. A., & Irwin, M. R. (2017, Jan). In Sickness and in Health: The Co-Regulation of Inflammation and Social Behavior. Neuropsychopharmacology, 42(1), 242-253. https://doi.org/10.1038/npp.2016.141
Hedman, E., Lekander, M., Karshikoff, B., Ljótsson, B., Axelsson, E., & Axelsson, J. (2016, Oct). Health anxiety in a disease-avoidance framework: Investigation of anxiety, disgust and disease perception in response to sickness cues. J Abnorm Psychol, 125(7), 868-878. https://doi.org/10.1037/abn0000195
Leschak, C. J., & Eisenberger, N. I. (2019, Oct). Two Distinct Immune Pathways Linking Social Relationships With Health: Inflammatory and Antiviral Processes. Psychosom Med, 81(8), 711-719. https://doi.org/10.1097/psy.0000000000000685
Schaller, M., Miller, G. E., Gervais, W. M., Yager, S., & Chen, E. (2010, May). Mere visual perception of other people's disease symptoms facilitates a more aggressive immune response. Psychol Sci, 21(5), 649-652. https://doi.org/10.1177/0956797610368064
Schaller, M., & Park, J. H. (2011). The Behavioral Immune System (and Why It Matters). Current Directions in Psychological Science, 20(2), 99-103. https://doi.org/10.1177/0963721411402596
Segerstrom, S. C. (2008, Mar). Social networks and immunosuppression during stress: relationship conflict or energy conservation? Brain Behav Immun, 22(3), 279-284. https://doi.org/10.1016/j.bbi.2007.10.011
Chapitre 12 - Traitements manuels et immunité
https://pubmed.ncbi.nlm.nih.gov/31283548/ PMID: 31283548 (Teodorczyk-Injeyan et al., 2019)
https://pubmed.ncbi.nlm.nih.gov/22119349/ PMID: 22119349 (Guillot et al., 2012)
https://pubmed.ncbi.nlm.nih.gov/31029795/ PMID: 31029795 (Hore & Denk, 2019)
https://www.ncbi.nlm.nih.gov/books/NBK6140/
Rhodes W. « The Official History of Chiropractic in Texas », 1925 « Chiropractic Practice – Volume 1 – Infectious Diseases »
https://pubmed.ncbi.nlm.nih.gov/1719112/ PMID: 1719112 (Brennan et al., 1991)
https://pubmed.ncbi.nlm.nih.gov/16396725/ PMID: 16396725 (Teodorczyk-Injeyan et al., 2006)
https://pubmed.ncbi.nlm.nih.gov/24836893/ PMID: 24836893 (Yao et al., 2014)
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7516474/ PMCID: PMC7516474 (Marin et al., 2020)
https://planetc1.com/1918-influenza-epidemic-and-chiropractic-care/
https://pubmed.ncbi.nlm.nih.gov/8707483/ PMID: 8707483 (Ironson et al., 1996)
https://pubmed.ncbi.nlm.nih.gov/23886205/ PMID: 23886205 (Khiewkhern et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/32502008/ PMID: 32502008 (Wu et al., 2020)
Brennan, P. C., Kokjohn, K., Kaltinger, C. J., Lohr, G. E., Glendening, C., Hondras, M. A., McGregor, M., & Triano, J. J. (1991, Sep). Enhanced phagocytic cell respiratory burst induced by spinal manipulation: potential role of substance P. J Manipulative Physiol Ther, 14(7), 399-408.
Guillot, X., Semerano, L., Decker, P., Falgarone, G., & Boissier, M. C. (2012, May). Pain and immunity. Joint Bone Spine, 79(3), 228-236. https://doi.org/10.1016/j.jbspin.2011.10.008
Hore, Z., & Denk, F. (2019, Jul). Neuroimmune interactions in chronic pain - An interdisciplinary perspective. Brain Behav Immun, 79, 56-62. https://doi.org/10.1016/j.bbi.2019.04.033
Ironson, G., Field, T., Scafidi, F., Hashimoto, M., Kumar, M., Kumar, A., Price, A., Goncalves, A., Burman, I., Tetenman, C., Patarca, R., & Fletcher, M. A. (1996, Feb). Massage therapy is associated with enhancement of the immune system's cytotoxic capacity. Int J Neurosci, 84(1-4), 205-217. https://doi.org/10.3109/00207459608987266
Khiewkhern, S., Promthet, S., Sukprasert, A., Eunhpinitpong, W., & Bradshaw, P. (2013). Effectiveness of aromatherapy with light thai massage for cellular immunity improvement in colorectal cancer patients receiving chemotherapy. Asian Pac J Cancer Prev, 14(6), 3903-3907. https://doi.org/10.7314/apjcp.2013.14.6.3903
Marin, T., Maxel, X., Robin, A., & Stubbe, L. (2020, Sep 25). Evidence-based assessment of potential therapeutic effects of adjunct osteopathic medicine for multidisciplinary care of acute and convalescent COVID-19 patients. Explore (NY). https://doi.org/10.1016/j.explore.2020.09.006
Teodorczyk-Injeyan, J. A., Injeyan, H. S., & Ruegg, R. (2006, Jan). Spinal manipulative therapy reduces inflammatory cytokines but not substance P production in normal subjects. J Manipulative Physiol Ther, 29(1), 14-21. https://doi.org/10.1016/j.jmpt.2005.10.002
Teodorczyk-Injeyan, J. A., Triano, J. J., & Injeyan, H. S. (2019, Oct). Nonspecific Low Back Pain: Inflammatory Profiles of Patients With Acute and Chronic Pain. Clin J Pain, 35(10), 818-825. https://doi.org/10.1097/ajp.0000000000000745
Wu, L., Dong, Y., Li, J., Huang, J., Wen, D., Peng, T., & Luo, J. (2020, Jun 5). The effect of massage on the quality of life in patients recovering from COVID-19: A systematic review protocol. Medicine (Baltimore), 99(23), e20529. https://doi.org/10.1097/md.0000000000020529
Yao, S., Hassani, J., Gagne, M., George, G., & Gilliar, W. (2014, May 6). Osteopathic manipulative treatment as a useful adjunctive tool for pneumonia. J Vis Exp(87). https://doi.org/10.3791/50687
Chapitre 13 - Gérer l'infodémie et les conséquences des mesures sanitaires
https://pubmed.ncbi.nlm.nih.gov/32125413/ PMID: 32125413 (Depoux et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33144785/ PMID: 33144785 (Lakhan et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32563745/ PMID: 32563745 (Luo et al., 2020)
https://osf.io/jqw6a (De Quervain et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32799105/ PMID: 32799105 (Xiong et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32818776/ PMID: 32818776 (Lahav, 2020)
https://pubmed.ncbi.nlm.nih.gov/33142124/ PMID: 33142124 (Asmundson & Taylor, 2020)
https://pubmed.ncbi.nlm.nih.gov/32878506/ PMID: 32878506 (Toprak Celenay et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32112714/ PMID: 32112714 (Brooks et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32526627/ PMID: 32526627 (Dubey et al., 2020)
Asmundson, G. J. G., & Taylor, S. (2020, Dec). Coronaphobia revisted: A state-of-the-art on pandemic-related fear, anxiety, and stress. J Anxiety Disord, 76, 102326. https://doi.org/10.1016/j.janxdis.2020.102326
Brooks, S. K., Webster, R. K., Smith, L. E., Woodland, L., Wessely, S., Greenberg, N., & Rubin, G. J. (2020, Mar 14). The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet, 395(10227), 912-920. https://doi.org/10.1016/s0140-6736(20)30460-8
De Quervain, D., Aerni, A., Amini, E., Bentz, D., Coynel, D., Gerhards, C., Fehlmann, B., Freytag, V., Papassotiropoulos, A., Schicktanz, N., Schlitt, T., Zimmer, A., & Zuber, P. (2020). The Swiss Corona Stress Study. https://doi.org/10.31219/osf.io/jqw6a
Depoux, A., Martin, S., Karafillakis, E., Preet, R., Wilder-Smith, A., & Larson, H. (2020, May 18). The pandemic of social media panic travels faster than the COVID-19 outbreak. J Travel Med, 27(3). https://doi.org/10.1093/jtm/taaa031
Dubey, S., Biswas, P., Ghosh, R., Chatterjee, S., Dubey, M. J., Chatterjee, S., Lahiri, D., & Lavie, C. J. (2020, Sep-Oct). Psychosocial impact of COVID-19. Diabetes Metab Syndr, 14(5), 779-788. https://doi.org/10.1016/j.dsx.2020.05.035
Lahav, Y. (2020, Dec 1). Psychological distress related to COVID-19 - The contribution of continuous traumatic stress. J Affect Disord, 277, 129-137. https://doi.org/10.1016/j.jad.2020.07.141
Lakhan, R., Agrawal, A., & Sharma, M. (2020, Oct). Prevalence of Depression, Anxiety, and Stress during COVID-19 Pandemic. J Neurosci Rural Pract, 11(4), 519-525. https://doi.org/10.1055/s-0040-1716442
Luo, M., Guo, L., Yu, M., Jiang, W., & Wang, H. (2020, Sep). The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public - A systematic review and meta-analysis. Psychiatry Res, 291, 113190. https://doi.org/10.1016/j.psychres.2020.113190
Toprak Celenay, S., Karaaslan, Y., Mete, O., & Ozer Kaya, D. (2020, Dec). Coronaphobia, musculoskeletal pain, and sleep quality in stay-at home and continued-working persons during the 3-month Covid-19 pandemic lockdown in Turkey. Chronobiol Int, 37(12), 1778-1785. https://doi.org/10.1080/07420528.2020.1815759
Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M. W., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., Majeed, A., & McIntyre, R. S. (2020, Dec 1). Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J Affect Disord, 277, 55-64. https://doi.org/10.1016/j.jad.2020.08.001
Chapitre 14 - Gérer les émotions, les incertitudes et la peur et retrouver confiance dans l'avenir
Sullivan Dan. Scary Times Manual.
Chapitre 15 - Comment rester centré dans des circonstances chaotiques
Pas de références
Chapitre 16 - 21
Chapitre 16 - Le programme et ses 5 phases
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
Chapitre 17 - La phase de prévention
https://pubmed.ncbi.nlm.nih.gov/24229526/ PMID: 24229526 (Davies et al., 2013)
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
Chapitre 18 - La phase d'exposition potentielle
https://www.bmj.com/content/370/bmj.m3223 (Jones et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
https://www.medrxiv.org/content/10.1101/2020.09.07.20180448v1 (Mohamed et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32574894/ PMID: 32574894 (Khan et al., 2020)
Chapitre 19 - La phase d'infection
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
Chapitre 20 - La phase d'emballement immunologique
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
Chapitre 21 - La phase de récupération
https://pubmed.ncbi.nlm.nih.gov/32425712/ PMID: 32425712 (Yanuck et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33041706/ PMID: 33041706 (Evans et al., 2020)
Davies, A., Thompson, K. A., Giri, K., Kafatos, G., Walker, J., & Bennett, A. (2013, Aug). Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster Med Public Health Prep, 7(4), 413-418. https://doi.org/10.1017/dmp.2013.43
Evans, J. M., Luby, R., Lukaczer, D., Rountree, R., Stone, P. M., Guilliams, T. G., Yanuck, S., Messier, H., Ramsdell, K., & Hanaway, P. J. (2020, May 9). The Functional Medicine Approach to COVID-19: Virus-Specific Nutraceutical and Botanical Agents. Integr Med (Encinitas), 19(Suppl 1), 34-42.
Jones, N. R., Qureshi, Z. U., Temple, R. J., Larwood, J. P. J., Greenhalgh, T., & Bourouiba, L. (2020). Two metres or one: what is the evidence for physical distancing in covid-19? BMJ, 370, m3223. https://doi.org/10.1136/bmj.m3223
Khan, M. M., Parab, S. R., & Paranjape, M. (2020, Sep-Oct). Repurposing 0.5% povidone iodine solution in otorhinolaryngology practice in Covid 19 pandemic. Am J Otolaryngol, 41(5), 102618. https://doi.org/10.1016/j.amjoto.2020.102618
Mohamed, N. A., Baharom, N., Wan Sulaiman, W. S., Zainol Rashid, Z., Wong, K. K., Ali, U. K., Othman, S. N., Abd Samad, M. N., Kori, N., Periyasamy, P., Zakaria, N. A., Sugumar, A. N. K., Mohammad Kazmin, N. E., Cheong, X. K., Saniman, S. M., & Isahak, I. (2020). EARLY VIRAL CLEARANCE AMONG COVID-19 PATIENTS WHEN GARGLING WITH POVIDONE-IODINE AND ESSENTIAL OILS: A PILOT CLINICAL TRIAL. medRxiv, 2020.2009.2007.20180448. https://doi.org/10.1101/2020.09.07.20180448
Yanuck, S. F., Pizzorno, J., Messier, H., & Fitzgerald, K. N. (2020). Evidence Supporting a Phased Immuno-physiological Approach to COVID-19 From Prevention Through Recovery. Integr Med (Encinitas), 19(Suppl 1), 8-35.
Chapitre 22 - Le long Covid: quand la maladie persiste
https://www.cdc.gov/mmwr/volumes/69/wr/mm6930e1.htm?s_cid=mm6930e1_w (Tenforde et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32644129/ PMID: 32644129 (Carfì et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/20337995/ PMID: 20337995 (Ngai et al., 2010)
https://pubmed.ncbi.nlm.nih.gov/20008700/ PMID: 20008700 (Lam et al., 2009)
https://pubmed.ncbi.nlm.nih.gov/32541351/ PMID: 32541351 (Iaccarino et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33016619/ PMID: 33016619 (Liotta et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/29787415/ PMID: 29787415 (Marra et al., 2018)
https://jamanetwork.com/journals/jamacardiology/fullarticle/2763524 (Shi et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32838240/ PMID: 32838240 (Lu et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/28831119/ PMID: 28831119 (Wu et al., 2017)
https://pubmed.ncbi.nlm.nih.gov/21435231/ PMID: 21435231 (Moldofsky & Patcai, 2011)
https://pubmed.ncbi.nlm.nih.gov/32758891/ PMID: 32758891 (Perrin et al., 2020)
https://www.tandfonline.com/doi/full/10.1080/21641846.2020.1778227 (Islam et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33113348/ PMID: 33113348 (Pellegrini et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32725449/ PMID: 32725449 (Yachou et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32758257/ PMID: 32758257 (Najjar et al., 2020)
https://openres.ersjournals.com/content/6/4/00542-2020.abstract (Goërtz et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32535093/ PMID: 32535093 (Ehrenfeld et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/33130000/ PMID: 33130000 (Halpert & Shoenfeld, 2020)
https://pubmed.ncbi.nlm.nih.gov/32535095/ PMID 32535095 (Angileri et al., 2020)
https://pubmed.ncbi.nlm.nih.gov/32461193/ PMID: 32461193 (Vojdani & Kharrazian, 2020)
https://doi.org/10.3389/fimmu.2020.617089 (Vojdani et al., 2021)
Angileri, F., Legare, S., Marino Gammazza, A., Conway de Macario, E., Jl Macario, A., & Cappello, F. (2020, Aug). Molecular mimicry may explain multi-organ damage in COVID-19. Autoimmun Rev, 19(8), 102591. https://doi.org/10.1016/j.autrev.2020.102591
Carfì, A., Bernabei, R., & Landi, F. (2020, Aug 11). Persistent Symptoms in Patients After Acute COVID-19. Jama, 324(6), 603-605. https://doi.org/10.1001/jama.2020.12603
Ehrenfeld, M., Tincani, A., Andreoli, L., Cattalini, M., Greenbaum, A., Kanduc, D., Alijotas-Reig, J., Zinserling, V., Semenova, N., Amital, H., & Shoenfeld, Y. (2020, Aug). Covid-19 and autoimmunity. Autoimmun Rev, 19(8), 102597. https://doi.org/10.1016/j.autrev.2020.102597
Goërtz, Y. M. J., Van Herck, M., Delbressine, J. M., Vaes, A. W., Meys, R., Machado, F. V. C., Houben-Wilke, S., Burtin, C., Posthuma, R., Franssen, F. M. E., van Loon, N., Hajian, B., Spies, Y., Vijlbrief, H., van ’t Hul, A. J., Janssen, D. J. A., & Spruit, M. A. (2020). Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Research, 6(4), 00542-02020. https://doi.org/10.1183/23120541.00542-2020
Halpert, G., & Shoenfeld, Y. (2020, Dec). SARS-CoV-2, the autoimmune virus. Autoimmun Rev, 19(12), 102695. https://doi.org/10.1016/j.autrev.2020.102695
Iaccarino, M. A., Tenforde, A. S., Zafonte, R. D., Silver, J. K., Hefner, J., & Paganoni, S. (2020, Sep). Neurological Manifestation of COVID-19 and the Enhanced Role of Physiatrists. Am J Phys Med Rehabil, 99(9), 858-859. https://doi.org/10.1097/phm.0000000000001502
Islam, M. F., Cotler, J., & Jason, L. A. (2020, 2020/04/02). Post-viral fatigue and COVID-19: lessons from past epidemics. Fatigue: Biomedicine, Health & Behavior, 8(2), 61-69. https://doi.org/10.1080/21641846.2020.1778227
Lam, M. H., Wing, Y. K., Yu, M. W., Leung, C. M., Ma, R. C., Kong, A. P., So, W. Y., Fong, S. Y., & Lam, S. P. (2009, Dec 14). Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med, 169(22), 2142-2147. https://doi.org/10.1001/archinternmed.2009.384
Liotta, E. M., Batra, A., Clark, J. R., Shlobin, N. A., Hoffman, S. C., Orban, Z. S., & Koralnik, I. J. (2020, Nov). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Transl Neurol, 7(11), 2221-2230. https://doi.org/10.1002/acn3.51210
Lu, Y., Li, X., Geng, D., Mei, N., Wu, P. Y., Huang, C. C., Jia, T., Zhao, Y., Wang, D., Xiao, A., & Yin, B. (2020, Aug). Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine, 25, 100484. https://doi.org/10.1016/j.eclinm.2020.100484
Marra, A., Pandharipande, P. P., Girard, T. D., Patel, M. B., Hughes, C. G., Jackson, J. C., Thompson, J. L., Chandrasekhar, R., Ely, E. W., & Brummel, N. E. (2018, Sep). Co-Occurrence of Post-Intensive Care Syndrome Problems Among 406 Survivors of Critical Illness. Crit Care Med, 46(9), 1393-1401. https://doi.org/10.1097/ccm.0000000000003218
Moldofsky, H., & Patcai, J. (2011, Mar 24). Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol, 11, 37. https://doi.org/10.1186/1471-2377-11-37
Najjar, S., Najjar, A., Chong, D. J., Pramanik, B. K., Kirsch, C., Kuzniecky, R. I., Pacia, S. V., & Azhar, S. (2020, Aug 6). Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflammation, 17(1), 231. https://doi.org/10.1186/s12974-020-01896-0
Ngai, J. C., Ko, F. W., Ng, S. S., To, K. W., Tong, M., & Hui, D. S. (2010, Apr). The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology, 15(3), 543-550. https://doi.org/10.1111/j.1440-1843.2010.01720.x
Pellegrini, L., Albecka, A., Mallery, D. L., Kellner, M. J., Paul, D., Carter, A. P., James, L. C., & Lancaster, M. A. (2020, Dec 3). SARS-CoV-2 Infects the Brain Choroid Plexus and Disrupts the Blood-CSF Barrier in Human Brain Organoids. Cell Stem Cell, 27(6), 951-961.e955. https://doi.org/10.1016/j.stem.2020.10.001
Perrin, R., Riste, L., Hann, M., Walther, A., Mukherjee, A., & Heald, A. (2020, Nov). Into the looking glass: Post-viral syndrome post COVID-19. Med Hypotheses, 144, 110055. https://doi.org/10.1016/j.mehy.2020.110055
Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q., Huang, H., Yang, B., & Huang, C. (2020). Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology, 5(7), 802-810. https://doi.org/10.1001/jamacardio.2020.0950
Tenforde, M., Kim, S., & Lindsell, C. (2020). Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network — United States, March–June 2020. MMWR Morb Mortal Wkly Rep. https://doi.org/http://dx.doi.org/10.15585/mmwr.mm6930e1
Vojdani, A., & Kharrazian, D. (2020, Aug). Potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases. Clin Immunol, 217, 108480. https://doi.org/10.1016/j.clim.2020.108480
Vojdani, A., Vojdani, E., & Kharrazian, D. (2021, 2021-January-19). Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases [Original Research]. Frontiers in Immunology, 11(3679). https://doi.org/10.3389/fimmu.2020.617089
Wu, Q., Zhou, L., Sun, X., Yan, Z., Hu, C., Wu, J., Xu, L., Li, X., Liu, H., Yin, P., Li, K., Zhao, J., Li, Y., Wang, X., Li, Y., Zhang, Q., Xu, G., & Chen, H. (2017, Aug 22). Altered Lipid Metabolism in Recovered SARS Patients Twelve Years after Infection. Sci Rep, 7(1), 9110. https://doi.org/10.1038/s41598-017-09536-z
Yachou, Y., El Idrissi, A., Belapasov, V., & Ait Benali, S. (2020, Oct). Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci, 41(10), 2657-2669. https://doi.org/10.1007/s10072-020-04575-3